2,222 research outputs found
Recommended from our members
Porosity in as-cast U-Al alloy
This memorandum documents a study that showed a cyclic occurrence of porosity in U-Al alloys produced in Building 321-M. Review of process data shows that the extent of porosity is more pronounced in months of warm, humid weather and less pronounced in cooler, drier months. This porosity is most likely caused by hydrogen, which becomes dissolved in the molten U-Al alloy during casting. Although excessive porosity was the cause of some observed process anomalies, this type of porosity has no significant effect on yield or fuel tube quality
Simulation of haemodynamic flow in head and neck cancer chemotherapy
<p>Abstract</p> <p>Background</p> <p>In recent years, intra arterial chemotherapy has become an important component in head and neck cancer treatment. However, therapy success can vary significantly and consistent treatment guidelines are missing. The purpose of this study was to create a computer simulation of the chemical agent injection in the head and neck arteries to investigate the distribution and concentration of the chemical.</p> <p>Methods</p> <p>Realistic three dimensional patient specific geometry was created from image scan data. Pulsatile blood flow, turbulence, the chemical agent injection via a catheter, and the mixture between blood and the chemical were then simulated through the arterial network by computational fluid dynamics software.</p> <p>Results</p> <p>The results show a consistent chemical distribution throughout all the arteries and this is ineffective. In addition, due to high wall shear stress and turbulence at the inner bifurcation wall, serious complications during the treatment could occur, for instance haemolysis or thrombosis.</p> <p>Conclusions</p> <p>The modelled catheter position is insufficient to provide a high chemical agent concentration in the desired tumour feeding artery, which is vital for therapy success.</p
Long term monitoring of bright TeV Blazars with the MAGIC telescope
The MAGIC telescope has performed long term monitoring observations of the
bright TeV Blazars Mrk421, Mrk501 and 1ES1959+650. Up to 40 observations, 30 to
60 minutes each have been performed for each source evenly distributed over the
observable period of the year. The sensitivity of MAGIC is sufficient to
establish a flux level of 25% of the Crab flux for each measurement. These
observations are well suited to trigger multiwavelength ToO observations and
the overall collected data allow an unbiased study of the flaring statistics of
the observed AGNs.Comment: 4 pages, 4 figures, to appear in the proceedings of the 30th
International Cosmic Ray Conference, Merida, July 200
SPM to the heart: mapping of 4D continuous velocities for motion abnormality quantification
International audienceThis paper proposes to apply parallel transport and statistical atlas techniques to quantify 4D myocardial motion abnormalities. We take advantage of our previous work on cardiac motion , which provided a continuous spatiotemporal representation of velocities, to interpolate and reorient cardiac motion fields to an unbiased reference space. Abnormal motion is quantified using SPM analysis on the velocity fields, which includes a correction based on random field theory to compensate for the spatial smoothness of the velocity fields. This paper first introduces the imaging pipeline for constructing a continuous 4D velocity atlas. This atlas is then applied to quantify abnormal motion patterns in heart failure patients
Recommended from our members
Structure and strain relaxation effects of defects in In<inf>x</inf>Ga<inf>1-x</inf>N epilayers
The formation of trench-defects is observed in 160 nm-thick InxGa1-xN epilayers with x ≤ 0.20, grown on GaN on (0001) sapphire substrates using metalorganic vapour phase epitaxy. The trench-defect density increases with increasing indium content, and high resolution transmission electron microscopy shows an identical structure to those observed previously in InGaN quantum wells, comprising meandering stacking mismatch boundaries connected to an I1-type basal plane stacking fault. These defects do not appear to relieve in-plane compressive strain. Other horizontal sub-interface defects are also observed for these samples and are found to be pre-existing threading dislocations which form half-loops by bending into the basal-plane, and not basal-plane stacking faults, as previously reported by other groups. The origins of these defects are discussed, and are likely to originate from a combination of the small in-plane misorientation of the sapphire substrate and the thermal mismatch strain between the GaN and InGaN layers grown at different temperatures.This work was funded in part by the Cambridge Commonwealth trust and the EPSRC. SKR is funded through the Cambridge-India Partnership Fund and Indian Institute of Technology Bombay via a scholarship. SKR also acknowledges funds from St. John’s College. MAM acknowledges support from the Royal Society through a University Research Fellowship.This is the accepted manuscript version. The final version is available from AIP at http://scitation.aip.org/content/aip/journal/jap/116/10/10.1063/1.4894688
Design of tensegrity structures using parametric analysis and stochastic search
Tensegrity structures are lightweight structures composed of cables in tension and struts in compression. Since tensegrity systems exhibit geometrically nonlinear behavior, finding optimal structural designs is difficult. This paper focuses on the use of stochastic search for the design of tensegrity systems. A pedestrian bridge made of square hollow-rope tensegrity ring modules is studied. Two design methods are compared in this paper. Both methods aim to find the minimal cost solution. The first method approximates current practice in design offices. More specifically, parametric analysis that is similar to a gradient-based optimization is used to identify good designs. Parametric studies are executed for each system parameter in order to identify its influence on response. The second method uses a stochastic search strategy called probabilistic global search Lausanne. Both methods provide feasible configurations that meet civil engineering criteria of safety and serviceability. Parametric studies also help in defining search parameters such as appropriate penalty costs to enforce constraints while optimizing using stochastic search. Traditional design methods are useful to gain an understanding of structural behavior. However, due to the many local minima in the solution space, stochastic search strategies find better solutions than parametric studies
Large-scale study of the NGC 1399 globular cluster system in Fornax
We present a Washington C and Kron-Cousins R photometric study of the
globular cluster system of NGC 1399, the central galaxy of the Fornax cluster.
A large areal coverage of 1 square degree around NGC 1399 is achieved with
three adjoining fields of the MOSAIC II Imager at the CTIO 4-m telescope.
Working on such a large field, we can perform the first indicative
determination of the total size of the NGC 1399 globular cluster system. The
estimated angular extent, measured from the NGC 1399 centre and up to a
limiting radius where the areal density of blue globular clusters falls to 30
per cent of the background level, is 45 +/- 5 arcmin, which corresponds to 220
- 275 kpc at the Fornax distance. The bimodal colour distribution of this
globular cluster system, as well as the different radial distribution of blue
and red clusters, up to these large distances from the parent galaxy, are
confirmed. The azimuthal globular cluster distribution exhibits asymmetries
that might be understood in terms of tidal stripping of globulars from NGC
1387, a nearby galaxy. The good agreement between the areal density profile of
blue clusters and a projected dark-matter NFW density profile is emphasized.Comment: 9 pages, 9 figures. Accepted for publication in A&
Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm
Tensegrities are spatial, reticulated and lightweight structures that are increasingly investigated as structural solutions for active and deployable structures. Tensegrity systems are composed only of axially loaded elements and this provides opportunities for actuation and deployment through changing element lengths. In cable-based actuation strategies, the deficiency of having to control too many cable elements can be overcome by connecting several cables. However, clustering active cables significantly changes the mechanics of classical tensegrity structures. Challenges emerge for structural analysis, control and actuation. In this paper, a modified dynamic relaxation (DR) algorithm is presented for static analysis and form-finding. The method is extended to accommodate clustered tensegrity structures. The applicability of the modified DR to this type of structure is demonstrated. Furthermore, the performance of the proposed method is compared with that of a transient stiffness method. Results obtained from two numerical examples show that the values predicted by the DR method are in a good agreement with those generated by the transient stiffness method. Finally it is shown that the DR method scales up to larger structures more efficiently. (C) 2010 Elsevier Ltd. All rights reserved
Mirror Position Determination for the Alignment of Cherenkov Telescopes
Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with
large apertures to map the faint Cherenkov light emitted in extensive air
showers onto their image sensors. Segmented reflectors fulfill these needs
using mass produced and light weight mirror facets. However, as the overall
image is the sum of the individual mirror facet images, alignment is important.
Here we present a method to determine the mirror facet positions on a segmented
reflector in a very direct way. Our method reconstructs the mirror facet
positions from photographs and a laser distance meter measurement which goes
from the center of the image sensor plane to the center of each mirror facet.
We use our method to both align the mirror facet positions and to feed the
measured positions into our IACT simulation. We demonstrate our implementation
on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).Comment: 11 figures, small ray tracing performance simulation, and
implementation demonstratio
- …