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Abstract  

Tensegrities are spatial, reticulated and lightweight structures that are increasingly investigated as 
structural solutions for active and deployable structures. Tensegrity systems are composed only 
of axially loaded elements and this provides opportunities for actuation and deployment through 
changing element lengths. In cable-based actuation strategies, the deficiency of having to control 
too many cable elements can be overcome by connecting several cables. However, clustering 
active cables significantly changes the mechanics of classical tensegrity structures. Challenges 
emerge for structural analysis, control and actuation. In this paper, a modified dynamic relaxation 
(DR) algorithm is presented for static analysis and form-finding. The method is extended to 
accommodate clustered tensegrity structures. The applicability of the modified DR to this type of 
structure is demonstrated. Furthermore, the performance of the proposed method is compared 
with that of a transient stiffness method. Results obtained from two numerical examples show 
that the values predicted by the DR method are in a good agreement with those generated by the 
transient stiffness method. Finally it is shown that the DR method scales up to larger structures 
more efficiently.  
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1. Introduction

Recent advances in theory and practice of active structural control have modified the general 
perception of structures. Upon integration of active elements, structures become dynamic objects 
capable of interacting with their environments. Increasingly, the ability to adapt to performance 
demands and environmental conditions has become key design criteria for a range of structural 
and mechanical systems. Among many structural topologies, the tensegrity concept is one of the 
most promising for actively controlled structures [1-6]. Tensegrities are spatial, reticulated and 
lightweight structures that are composed of struts and cables. Stability is provided by the self-
stress state in tensioned and compressed elements [7, 8]. The tensegrity concept has applications 
in fields such as sculpture, architecture, aerospace engineering, civil engineering, marine 
engineering and biology [9]. Tensegrity structures have a high strength-to-mass ratio and this 
leads to strong and lightweight structural designs [10-12]. Furthermore, tensegrities are flexible 
and easily controllable using small amounts of energy [13]. These features create situations 
where tensegrity structures are particularly attractive for active and deployable structures.  

As a special type of prestressed pin-jointed framework, tensegrity structures are composed of 
axially loaded elements and this provides opportunities for actuation and deployment through 
changing element lengths. Length changes can be made to struts and cables through various 
actuation strategies. Strut-based actuation, employing telescopic members, has already been used 
in active tensegrity control applications. Fest et al. [14] experimentally explored shape control of 
a five-module large-scale active tensegrity structure. The actuation strategy was based on 
controlling the self-stress state of the structure through small movements of ten telescopic struts. 
This actuation was also used for self-diagnosis, self-repair and vibration control [1, 15]. 
Kanchanasaratool and Williamson [16] used actuated struts to perform feedback shape control for 
a simple tensegrity module. Hanaor [17] studied deployment of a simplex-based tensegrity grid 
using telescopic struts. Tibert and Pellegrino [18] numerically and experimentally investigated 
use of telescopic struts for the deployment of tensegrity reflectors. Generally, strut-based 
actuation becomes difficult to implement under conditions where internal forces are substantial, 
and required changes in shape are large. Furthermore, when strut-actuation is used for 
deployment, the structure may have no stiffness until it is fully deployed. 

Cable-based actuation has been investigated in many research projects involving active and 
deployable structures. Bouderbala and Motro [19] studied folding of octahedron assemblies and 
showed that cable-mode folding was less complex than strut-mode, although the latter produced a 
more compact package. Djouadi et al. [20] developed a cable-control strategy for vibration 
damping of a tensegrity structure. Sultan and Skelton [5] proposed a tendon-control deployment 
strategy for tensegrity structures. Actuation is conducted in such way that the structure goes 
throughout successive equilibrium configurations. Wroldsen et al [6] investigated shape control 
of a tensegrity prism where actuation is performed by changing cable rest-lengths. Pinaud et al 
[21, 22] implemented tendon control deployment of a small-scale tensegrity boom composed of 
two tensegrity modules and studied asymmetrical reconfigurations during deployment. Smaili 
and Motro [23] investigated folding of tensegrity systems by activating finite mechanisms. A 
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cable-control strategy is applied to a double-layer tensegrity grid. The proposed strategy is then 
extended to the folding of curved tensegrity grids [4]. Similarly, Sultan [24]  presented a shape-
control strategy for tensegrity structures in which the motion is controlled through infinitesimal 
mechanisms directions.  

Most research studies of deployment of tensegrity structures showed that cable-actuation strategy 
directs tensegrity structures to maintain stiffness as they move from one equilibrium position to 
another. There are, however, a few disadvantages with this approach. Tibert and Pellegrino [25] 
argued that controlling cables is complicated, because of all the additional mechanical devices 
that are necessary. The deficiency of having to control too many cable elements can be overcome 
by connecting several cables together and using only one motor to control them [5]. This suggests 
that groups of individual active cable elements could be combined into continuous active cables. 
A single continuous cable can slide over multiple nodes through frictionless pulleys. This 
strategy has the advantage that fewer actuators are necessary for control. However, using 
continuous cables significantly changes the mechanics of classical tensegrity structures. 
Specifically the number of self-stress states can decrease and the mechanisms can increase [26]. 
This leads to significant challenges for structural analysis, control and actuation.  

Finite-element formulations for sliding cable elements have been developed for modeling of 
suspension systems [27-30] and fabric structures [31]. Kwan and Pellegrino [32] proposed a 
matrix formulation for an active-cable macro-element consisting of two or more straight 
segments. The authors derived the equilibrium and flexibility matrices of active cable elements 
and pantographic elements that have been used in deployable structures. Chen et al [33] presented 
a formulation of multi-node sliding cable element for the analysis of Suspen-Dome structures. 
Genovese [34] investigated an approach to form-finding and analysis of tensegrity structures with 
sliding cables. The complete formulation of such systems was provided by Moored and Bart 
Smith [35]. Moored and Bart-Smith [35] formulated the potential energy, equilibrium equations 
and stiffness matrix for tensegrity structures with continuous cables. The equilibrium equations 
of a tensegrity structure are non linear. Analysis can thus be carried out in an iterative manner 
through use of the transient stiffness method. Matrix methods generally require iterative 
assembling and inversion of large stiffness matrices. As a vector-based method, the dynamic 
relaxation method (DR) does not require such complexity. This method introduced by Otter [36] 
and Day [37] in the mid-1960s is particularly attractive for modeling nonlinear structural 
behaviour. DR is an explicit iterative method for the static solution of structural-mechanics 
problems [38]. When the DR method is used, the static problem is transformed into a pseudo-
dynamic one by introducing fictitious inertia and damping terms in the equation of motion. DR 
traces the motion of each node of a structure until, due to artificial damping, the structure comes 
to rest in static equilibrium. One of the advantages of this method is that global stiffness matrix is 
not needed and hence the method is particularly suitable for problems with material and 
geometrical nonlinearities. DR has been used by many researchers to solve a wide variety of 
engineering problems [39-45]. Furthermore, Barnes [46, 47] showed that DR is particularly 
efficient for form finding and analysis of tension structures. Hundreds, perhaps thousands of 
structures such as cable-stayed bridges and large tent structures have been designed and then 
analyzed using DR. For a tensegrity structure with continuous cables, the uncoupled nature of the 
DR process makes it particularly straightforward to implement [44].    
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In this paper, a modified dynamic relaxation algorithm applicable to the analysis of tensegrity 
structures with continuous cables is proposed. In the following section, characteristics and 
modeling of this particular class of tensegrity structures are first investigated. The subsequent 
section introduces the modified dynamic relaxation method. Governing equations, formulation of 
residuals forces, masses and damping strategy are described. The modified DR algorithm is 
described in detail. Numerical results are presented in Section 4. The algorithm is validated by 
simulating load response, actuation and deployment of two active tensegrity structures. Results 
are compared with those obtained employing a stiffness-based algorithm to show effectiveness of 
the proposed methodology. 

2. Characteristics and modeling of clustered tensegrity structures

2.1 Basic assumptions 

Moored and Bart-Smith [35] proposed the term “clustered tensegrity” to denote a particular class 
of tensegrity structures having sliding or continuous cables. This terminology is adopted in this 
paper. Since the use of the term “clustering” can be confusing, the definition of a clustered 
tensegrity is emphasized here. A clustered tensegrity is defined to be a tensegrity structure where 
at least two cable elements are grouped together to become a single element. “Clustering” can be 
achieved by having a cable sliding around a pulley pinned to a node thereby replacing two or 
more cables in the structure with one. Each group of individual cables that are combined into one 
continuous cable is then called a “cable-element cluster”. Furthermore, actuation strategy 
employing active cable clusters is denoted as “clustered actuation”. In addition to these 
definitions, the following modeling assumptions are made: 

Tensegrity members are connected by pin-joints.
External loads are applied at nodes.
Self-weight is transferred to nodes as point loads. Consequently, non-axial stresses in
the tensegrity members are neglected.
For clustered elements, cable groups are assumed to run over small frictionless pulleys
attached to joints.
Actuation is performed through small and slow steps such that inertia effects can be
neglected when the structure is in motion.

2.2 Equilibrium equations of clustered tensegrity structures  

As stated in the modeling assumptions, actuation is conducted in such way that the structure goes 
through successive equilibrium configurations. Friction and dynamic effects are not taken into 
account in this study. Only static behavior of clustered tensegrity structures is studied in this 
paper. Moored and Bart-Smith [35] showed that clustering significantly changes the mechanics 
of tensegrity structures. However, the governing equations for a clustered tensegrity structure are 
related to those of an equivalent classic tensegrity (without clustered elements). This property is 
exploited in this paper for the analysis of clustered tensegrity structures using a modified 
dynamic relaxation algorithm. The relationship between equilibrium equations of a clustered 
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tensegrity structure and those of an equivalent classic tensegrity are explained in the next 
paragraph through a simple example.           
 
Consider the three-element structure shown in Figure 1(a). The unconstrained reference node 1 is 
connected to nodes 2, 3 and 4 by members e12, e13 and e14, respectively. All three elements are 
supposed to be tensioned.      
 
 

2,1,3 2,1,3,l t

1,4 1,4,l t1,4 1,4,l t

1,2 1,2,l t

1,3 1,3,l t

 
Figure 1. A three-element structure and the equivalent configuration with one continuous cable. 

 
 
The equilibrium equations of node 1 are given by Eq.(1), where each member eA,B has an internal 
force tA,B and a length lA,B. f1 is an external force applied to node 1. 
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 1,2 1,2 1 3 1,3 1,3 1 4 1,4 1,4 1,

1 2 1,2 1,2 1 3 1,3 1,3 1 4 1,4 1,4 1,

1 2 1,2 1,2 1 3 1,3 1,3 1 4 1,4 1,4 1,

x

y

z

x x t l x x t l x x t l f

y y t l y y t l y y t l f

z z t l z z t l z z t l f

− + − + − =

− + − + −

− + − + −

=

=

 [Eq.1] 

 
The matrix form of Eq.(1) relates an equilibrium matrix A, an internal force vector t and an 
external force vector f : 
 

At = f  [Eq.2] 
 
Consider now the clustered two-element structure shown in Figure 1(b). For this configuration, 
elements e1,2 and e1,3 are replaced by a single element ē213 that is assumed to run over a small 
frictionless pulley connected to node 1. The structure with one continuous cable (Figure 1(b)) is 
thus composed of two elements ē213 and ē14. For simplicity we will denote the two-element 
structure with continuous cable as the clustered structure and the equivalent systems without 
continuous elements as the classic structure.  
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The characteristics of the clustered structure set of elements, e , can be easily written in terms of 
the characteristics of the classic structure set of elements, e. For instance, element lengths of the 
clustered structure can be related to element lengths of the equivalent classic structure by Eq.(3).  

2,1,3 1,2 1,3

1,4 1,4

l l l

l l

= +

=
[Eq.3] 

Eq.(3) can be written in matrix form, where the element lengths of the clustered structure are 
related to element lengths of the classic structure through a transformation matrix composed of 
0/1 elements (Eq.(4)). 

1,2
2,1,3

1,3
1,4

1,4

1 1 0
0 0 1

l
l

l
l

l

⎧ ⎫
⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪=⎨ ⎬ ⎨⎢ ⎥
⎪ ⎪ ⎣ ⎦⎩ ⎭ ⎪

⎩ ⎭

⎪
⎬
⎪

 [Eq.4] 

Moored and Bart-Smith [35] called this transformation matrix the clustering matrix, e e×∈S and 
showed that this matrix can be defined as follow:  

1,

0,

j

ij i

if the classic element e  is part 

S of element cluster e , 
otherwise.

⎧
⎪

= ⎨
⎪
⎩

[Eq.5] 

Through the clustering matrix S, the vector of element lengths of the classic structure, l, is 
transformed into a reduced set of element lengths of the clustered structure, l . 

=l S l [Eq.6] 

Equivalently, rest lengths of the clustered structure elements may be defined in the same way. 

=0 0l S l [Eq.7] 

With the assumption that all element clusters run over frictionless pulleys, each continuous cable 
in the clustered structure can be assumed as a string of cable sub-elements all carrying the same 
tensile force. The vector of internal forces of the clustered structure elements can thus be related 
to the vector of internal forces of the classic structure elements through transposition of the 
clustering matrix.      

[Eq.8] Tt = S t
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As for the classic structure, equilibrium equations of the clustered structure are based on nodal 
equilibrium under the action of the external load components of vector f and the internal force 
components of vector t. Substituting the vector of internal forces t by the product T tS  yields the 
equilibrium equations for the clustered structure (Eq.(9)). 

Moored and Bart-Smith [35] obtained the same expression for the equilibrium condition of a 
general clustered tensegrity using more fundamental energy approach. They also derived the 
stiffness matrix by deriving equilibrium equations. Analysis of clustered tensegrities can thus be 
achieved in an iterative manner using transient stiffness method. We will show in the next section 
that, based on the formulation of the equilibrium equations, a modified dynamic relaxation 
algorithm can efficiently be used for analysis of clustered tensegrities.  

3. Formulation of the modified dynamic relaxation method

The DR is based on the fact that the static solution of both linear and non linear structures subject 
to load may be regarded as the limiting equilibrium state of damped structural vibrations. Hence, 
when the DR method is used to solve a static problem, the static problem is transformed into a 
pseudo-dynamic one by introducing fictitious inertia and damping terms in the equation of 
motion. Since the DR method is an explicit finite difference solver, a time marching procedure is 
used to solve the equations of motion. Thus, DR traces the motion of each node of a structure 
until, due to artificial damping, the structure comes to rest in a stable static equilibrium. Note that 
only internal and external forces represent the physical problem, mass terms and damping 
strategy do not need to represent the physical structure. However, damping, mass and time 
increments should be selected so that the transient response is rapidly attenuated leaving the static 
solution for the applied load. Before proposing modifications to the DR algorithm, an overview 
of the basic governing equations of this method is given to provide the necessary background.       

3.1 Governing equations 

The DR method follows from augmenting static equilibrium equations (Eq.10) by including 
inertial and damping terms (Eq.11): 

In Equations 10 and 11, u and v are the vectors of nodal displacements and velocities, M and C 
are the mass and damping matrix, Fint is the vector of internal forces and Fext is the vector of 
external forces. Introducing the residual force vector R as the difference between external and 
internal forces at any time t, Eq.(11) becomes 

TAS t = f

{

[Eq.9] 

int extF (u) = F [Eq.10]

} int ext+ +M v C v F (u) = F [Eq.11]
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t t tM v + C v = R  [Eq.12]
 
Due to damping, nodal velocities and accelerations decay to zero as the solution is approached. 
The transient response is attenuated leaving the steady state solution for the applied load. The 
static equilibrium is thus attained and the out-of-balance or residual forces come to zero. 
   
To obtain the DR basic equations, the following central difference approximations are used for 
temporal derivatives: 
 

/2 - /2t t t t+Δ Δ

Using these approximations, Equation (11) can be re-arranged to give the recurrence equations 
for nodal velocities where subscript i,x refers to the ith node and direction x (respectively, for 
directions y and z): 
 

 
The velocities are then used to predict displacements at time (t + Δt):  
 

 
The iterative process of DR method consists of a repetitive use of Eq.(14) and (15). The process 
continues until the residual forces are close to zero. The values of masses M and damping C have 
to be chosen to ensure that the recurrence scheme converge to the static equilibrium [38]. 
Generally, a diagonal mass matrix is used along with a mass proportional damping matrix. This 
strategy involves the determination of a critical viscous damping coefficient. An alternative 
damping approach is the use of kinetic damping. This approach is adopted in this study and is 
described in detail in the following sections.       
 
3.2 Residual forces of clustered elements      
 
The modification introduced to DR in order to adapt it to the analysis of clustered tensegrities is 
concerned with the calculation of the residual forces. Since clustering considerably affects the 
distribution of internal forces in a clustered structure, residual forces are affected. The entire 
procedure for residual force calculation is listed in Table 1. 
 
At each time step t, Eq.(15) is used to determine current node coordinates of the structure. The 
new member-length vector is thus easily determined. Current clustered tensegrity element lengths 
can be calculated using Eq.(6). Subsequently, current internal forces in the mth-member of the 
clustered tensegrity may be determined as follows: 
 

2
t =

v + vv , 
/2 - /2t t t t+Δ Δ

t

t
=

Δ
v - vv  [Eq.13]

, ,/2 /2
, , ,

, , , ,

( ) ( )
2 2

i x i xt t t t t
i x i x i x

i x i x i x i x

v v R
M t C M t C

+Δ −Δ 2 1M t CΔ −
= +

Δ + Δ +

/2
, , ,.t t t t t

i x i x i xu u t v+Δ +Δ= + Δ

 [Eq.14]

 [Eq.15]
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( ) 0t tm mE A
0,

0,
m m m m

m

t l l t
l

= − +  [Eq.16]

 
where 0,ml  and t t

ml
+Δ  are rest and current length of clustered member m. mE , mA  and 0

mt are 
Young modulus, cross-section area and initial prestress of clustered member m.  
 
Once the vector of internal forces in the clustered tensegrity elements ( t ) is determined, the 
vector of internal forces in the tensegrity members ( t ) can be computed employing Eq.(8). The 
residual forces can thus be calculated. For any node i, the residual force in x-direction Ri,x is 
calculated as the sum of the external force fext,i,x and the x-component of the resultant force 
induced by the contributions of the N members meeting at node i. Eq.(17) gives the expression of 
the x-component of the residual force at node i where and  are tension and length of  
member m connecting node i to node j. Similar equations may be written for the y and z 
coordinate directions.   

t
mt

t
ml

 

 
 
Table 1: Algorithm for residual force calculation  
I. inputs  At any time step, t:  

Current nodal coordinates  
Clustering matrix, S 
Clustered-element properties: Young modulus, mE ; cross-section area, mA ; rest-

length, 0,ml and prestress, 0
mt   

II. computation   (1) Calculation of element length vector,      l
 (2) Calculation of the vector of clustered-element lengths 

=l S l  
 (3) Calculation of clustered-element internal forces, 

( ) 0
0,

0,

t tm m
m m

E At l l t
lm m

m

= − +  

 (4) Calculation of element internal forces, 
Tt = S t

0m

 
 (5) If (cable element and compression force): t =  

 
 (6) Calculation of residual force, for each node i and direction x (respectively, for y 

and z)   

( ), , , , ,
1

t t tm
i x ext i x j m i mt

m m

tN tR f x x
l=

= + −∑  

 (7) Reset the residuals of all fixed or partially constrained nodes to zero 

( ), , , , ,
1

t t tm
i x ext i x j m i mt

m m

tN tf x x
l=

= + −∑  [Eq.17]R
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3.3 Fictitious masses and kinetic damping     
 
In the DR method the mass matrix, damping and time increment should be defined in such way 
that the stability and convergence of the iterative procedure is guaranteed [48]. Generally, if the 
time interval is too large or the masses too small, then instability of the iteration may occur. The 
analysis will thus not converge to an equilibrium position. Furthermore, damping is a key 
parameter in the DR method. Overdamping or underdamping impedes the convergences to a 
stable equilibrium state [49]. Various approaches to the selection of the foregoing parameters 
have been published in the literature [38, 48-51]. The most common method of determining mass 
terms is to use Gerschgörin’s theorem. This theorem gives the following general expression that 
must be satisfied in order to guarantee the stability of the iterations [38]:   
 

 
where ki,j are the elements of the tangent stiffness matrix. 
 
Barnes [47] addressed form-finding and analysis of tension structures and studied stability and 
setting of mass components. According to Barnes [47], the mass at any node i should be set to 
comply with Eq.(19) in order to guarantee the stability of the iterations for an arbitrarily chosen 
value of the time increment Δt.  
 

 
For each node of the structure, the direct stiffness ki is calculated by summing up contributions of 
all members meeting at node i. For tensioned members, the main stiffness component should 
account for both elastic and geometric stiffness. A stiffness term is thus assigned to each 
coordinate direction (Eq.(20)). 
 

 
Similar equations may be written for ki,y and ki,z for node stiffness in the y and z coordinate 
directions. Three nodal mass components are thus assigned to each node resulting in a 3×3 block 
diagonal nodal mass matrix. It should be pointed out that the geometric stiffness ( m mlt ) is set to 
zero for members in compression and slack cables. On the other hand, boundary conditions may 
be imposed by assigning large masses to fixed joints.   
 
Kinetic damping is adopted in this work. In contrast with viscous damping, which assumes that 
connection between the nodes has a viscous force component, kinetic damping is artificial 

21
,4i i j

j
M t k≥ Δ ∑  [Eq.18]

2 ktΔ⎛ ⎞ ,
, 0.5 2

i x
i xM = ⎜ ⎟

⎝ ⎠
 [Eq.19]

2
N x xE A t ⎛ ⎞⎛ ⎞ −, ,

,
1 0,

j m i mm m m
i x

m m m m

k
l l l=

= + ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑  [Eq.20]
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damping with no real effect. Employed successfully by many authors, kinetic damping has been 
found to be stable and rapidly convergent when dealing with large displacements [47, 50, 52]. 
When kinetic damping is employed, the viscous damping coefficients in Eq.(14) are no longer 
needed. As dynamic relaxation iterations proceeds, the kinetic energy of the undamped structure 
is calculated. When a kinetic peak is detected, all nodal velocities are set to zero and the current 
coordinates are taken as starting values for the next cycle of iterations. The analysis continues, 
progressively eliminating the kinetic energy from various modes of vibration until the required 
degree of convergence is obtained. Tracing kinetic energy is based on the fact that, in simple 
harmonic motion, maximum kinetic energy is achieved in a configuration that corresponds to 
static equilibrium position with minimum potential energy. The adoption of kinetic damping thus 
eliminates the need to compute optimized viscous damping coefficients and offers a substantial 
reduction in the number of iterations required to find a solution. Furthermore, this strategy can 
efficiently accommodate geometrical inaccuracies and stiffness modifications [44]. 
 
 
 
 
3.4 DR algorithm      
 
The complete algorithm for the DR method used for a clustered tensegrity structure is presented 
in Table 2. When the process starts, residual forces and kinetic energy are set to zero. Nodal 
velocities are initialized using Eq.(21). 
 

 
This gives effectively 2 2

, ,
t t

i x i xv vΔ −= − Δ , i.e. , 0i xv = at time zero. Velocities are similarly reset to zero 
after each energy peak (step (4.4) in Table 2). As DR iterations proceeds, the kinetic energy of 
the structure is monitored. It can be deduced that an energy peak has occurred when the current 
value of kinetic energy is smaller than the value of the previous iteration. Since the iterative 
process is punctuated by discrete time intervals Δt, the point at which the kinetic energy reached 
a maximum value is not precisely determined and a small correction of nodal coordinates is thus 
needed (step (4.1) in Table 2). At this point, nodal velocities are reset to zero and the corrected 
coordinate values are taken as starting values for the next cycle of iterations [47, 53]. The 
iterative process continues until static equilibrium is attained when the norm of the vector of 
residual forces goes below a fixed precision value.  

2 0
, ,

,2
t

i x i x
i x

t
v

M
Δ Δ

= R  [Eq.21]



Bel Hadj Ali, Nizar, Rhode-Barbarigos, Landolf and Smith, Ian F.C., “Analysis of clustered tensegrity structures 
using a modified dynamic relaxation algorithm” International Journal of Solids and Structures, In Press.  

 
 

 12

 
Table 2: The DR algorithm for clustered tensegrity analysis 
I. Initialize  0 50, 0, 0, 10 , 0.01tolt u KE R t−= = = = Δ =  
 calculate clustering matrix and clustered-member properties 
 calculate initial residual forces, 0

,i xR  (Table 1)  
 calculate nodal masses, ,i xM  (Equations (19) and (20))  
 calculate initial velocities, 2

,
t

i xvΔ (Eq.(21))  
 

II. Iteration process  (1) velocity update  
2 2

, ,
,

t t t t t
i x i x i x

i x

v v
t

,R
M

+Δ −Δ Δ
= +  

 (2) update displacement and nodal coordinate  
2

, , ,
t t t t t t
i x i x i xu u t v+Δ −Δ +Δ= Δ+  

,
t t t t t
i i ix x u x
+Δ += + Δ  

 (3) calculate current kinetic energy  

( )2
1

, ,2 ,
t t t t

i x i xi x
KE vM+Δ +Δ= ∑  

 (4) if : energy peak detected otherwise go to step (5)  t t tKE KE+Δ ≤
  (4.1) nodal coordinate correction 

,23 1
,2 2

,

t
i xt t t t t t

i i i x
i x

x x t v t
R
M

+Δ +Δ +Δ= Δ Δ− +  

  (4.2) recalculate residual forces, ,
t
i xR  (Table 1) 

  (4.3) check convergence: 
         if t

tolR≤R  go to step (8); otherwise continue   

  (4.4) reset velocities to zero  
2

, ,
,2

t t t
i x i xt

i x

t
v R

M
+Δ Δ

=  

  (4.5) reset kinetic energy to zero : 0t tKE +Δ =  
 (5) update residual forces, ,

t t
i xR +Δ  (Table 1)      

 (6) update nodal masses, (Equations (19) and (20))   
 (7)  and go to step (1) t t t= + Δ
 (8) print the results and stop; 
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4. Numerical examples  
 
In this section, two numerical examples are presented and discussed in order to show the 
efficiency of the proposed DR procedure in predicting the non linear response of clustered 
tensegrity structures. A computer program is developed based on the above-mentioned algorithm 
(Table 2). For the verification purpose transient stiffness method, based on Moored and Bart-
smith formulation [35], is also programmed. The efficiency of the proposed DR algorithm is first 
demonstrated through analysis of a clustered tensegrity beam. Both actuation response and load 
response of the clustered tensegrity beam are investigated. Deployment through clustered 
actuation is also simulated numerically. A deployable quadruplex-based structure is studied. For 
all numerical cases, computations were stopped when the norm of the vector of residual forces 
was below 10-4. 
        
4.1 Tensegrity beam      
 
The performance of the proposed modified DR algorithm is demonstrated using the topology of a 
clustered tensegrity structure studied by Moored and Bart-Smith [35]. The structure is a 
tensegrity beam composed of an assembly of three prismatic modules commonly known as 
quadruplex modules.  
 

Saddle cables 

Vertical cables 
Struts

Reinforcing cable

(a) Basic quadruplex module (b) Reinforced quadruplex module  
 

Figure 2. Quadruplex module 

 
The quadruplex unit shown in Fig.2 (a) comprises four struts held together in space by 12 cables. 
When only rigid-body movements are blocked, this tensegrity unit has a unique state of self-
stress and three infinitesimal mechanisms. The module can be reinforced by adding four 
reinforcing cables which remove mechanism modes from the structure (Fig.2 (b)).     
Three reinforced modules are connected together with no bar-to-bar connections, forming a class 
1 tensegrity structure. A perspective view of the tensegrity beam is given in Fig. 3 where grayed 
lines denote bars and thin lines denote cables. Three of the end nodes of the structure (nodes 1, 3 
and 6) are pinned forming a cantilever beam. Ten cable elements of the top surface and ten cable 
elements of the bottom surface of the structure are grouped into four cable-element clusters. In 
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Fig.4, clustered elements are shown in dashed lines in a top view of the tensegrity beam. Each 
cable cluster is attached to two end nodes and runs frictionnlessly through four intermediate 
nodes. Details of the four cable clusters are given in Table 3.  
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Figure 3. A perspective view of the tensegrity beam 
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Figure 4. Clustered elements of the tensegrity beam 

 
Table 3: Details about clustered cables 
Cable  Position  End nodes  Intermediate nodes  
1 Top surface  6 and 21 5, 14, 13 and 22 
2 Top surface 8 and 23 7, 16, 15 and 24 
3  Bottom surface  1 and 18 2, 9, 10 and 17 
4 Bottom surface  3 and 20 4, 11, 12 and 19 

 
The tensegrity beam used in this study has a length of 212cm, a width of 80cm and a height of 
30cm. Struts are made of aluminum hollow tubes with a length of 85cm. Saddle, vertical and 
reinforcing cables have a length of 60, 48 and 40 cm, respectively. All cable members are made 
by stainless-steel. Detailed characteristics of used members are summarized in Table 4. 
 

Table 4: Material characteristics for the tensegrity beam   
Member  Material   Cross-section area  

(cm2)  
Young modulus  
(kN/cm2)  

Specific weight  
(kN/cm3) 
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Struts  Aluminum  2.55 7000 2.7 10-5 

Cables  Stainless-steel  0.5026 11500 7.85 10-5 
 
Actuated bending deformation of the tensegrity beam is first studied. Bending deformation can be 
obtained through antagonist actuation of the of top and bottom cable clusters. Actuation is 
performed by changing the effective rest length of active cables. For example, a prescribed 
actuation stroke of 20% is defined as a change in the rest length of 20%. Prior to actuation, top 
cluster cables are contracted by 2% in order to introduce self-stress in the structure and counteract 
deflection induced by self-weight. The tensegrity beam is then actuated through modifying 
lengths of the four clustered cables. Top clusters are actuated with 10% contraction while the 
bottom clusters are expanded by 10%. Contraction and elongation of active clusters is made 
progressively in steps of 1%. Note that actuation is deliberately performed through small and 
slow steps such that inertia effects can be neglected when the structure is in motion. The 
actuation response obtained by the proposed DR method and transient stiffness method based on 
Moored and Bart-Smith formulation [35] are compared in Fig. 5. Displacements at the top node 
18 of the beam are displayed with respect to the actuation ratio in active elements (Fig.5). It is 
observed that the result of the present study are in agreement with those obtained by Moored and 
Bart-Smith [35].    
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Figure 5. Actuation-response of the clustered tensegrity beam 

 
When the top clusters have been actuated with 10% contraction while the bottom clusters have 
been expanded by 10%, this results in a 55cm tip deflection in the positive z-direction (Fig.6). 
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Figure 6. Deformed shape of the tensegrity beam due to 10% actuation of cable clusters 

 
The efficiency of each method is studied in terms of the CPU time required for a solution. Results 
displayed in Table 5 indicate that for the DR method convergence is achieved in an average time 
of 1.10s. For the transient stiffness method, the average CPU time needed for convergence for the 
eleven runs is smaller (0.34s). The transient stiffness algorithm requires a fewer number of 
iterations than the DR algorithm. Furthermore, the number of iterations for the eleven runs of the 
two methods varies little.  
 

Table 5: Efficiency comparison between DR and transient stiffness methods  
Actuation ratio 
(%) 

DR Transient stiffness
Number of KE 
resets 

Number of 
iterations  

CPU time (s) Number of 
iterations  

CPU time (s) 

0 36 11015 1.28 22 0.21 
1 38 9916 1.23 27 0.25 
2 39 11108 1.28 29 0.26 
3 37 9796 1.13 31 0.28 
4 40 8947 1.03 38 0.34 
5 38 9240 1.08 48 0.44 
6 42 9493 1.09 53 0.48 
7 41 8343 0.97 37 0.33 
8 39 9135 1.07 43 0.39 
9 41 9012 1.05 37 0.33 
10 42 7806 0.92 46 0.42 

 
The efficiency of the two methods is further investigated through the study of their computational 
complexity [54]. Computational complexity is an algorithm-efficiency criterion independent of 
the computing technology employed. This criterion describes the efficiency of an algorithm 
according to factors such as task formulation and algorithm optimality that influence trends in 
execution time. This is achieved by expressing the relation between the relative influence of the 
size of input and the time taken for the algorithm to terminate.  
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The execution time of both DR and transient stiffness algorithms depends on the size and the 
degree of non linearity of the structure. The number of structure nodes (n) is used to describe the 
structure size. On the other hand, the number of iterations required for convergence is highly 
dependent on the degree of non linearity of the structure. In dynamic relaxation, the uncoupled 
vectorized process results in a linear complexity (O(n)). In the transient stiffness method, forming 
the tangent stiffness matrix and resolving the equilibrium system of equations are 
computationally intensive parts of the analysis. Employing a direct method to solve the 
equilibrium system of equations is at best of a O(n 3) complexity.  
 
The DR algorithm has a lower complexity compared with the transient stiffness algorithm. This 
implies that for a large structure, convergence is achieved with smaller execution time if the DR 
is employed rather than the transient stiffness method. For example, the execution time is 
evaluated on a class 2 tensegrity structure with 65 nodes and 245 members. The DR algorithm 
requires 0.54s to terminate; while the transient stiffness algorithm converges within 4.55s (both 
programs were executed on the same station). The DR converges faster for the class 2 tensegrity 
structure comparing to the 24 node class1 tensegrity structure. This discrepancy shows the 
influence of the degree of non linearity on the convergence rate of the DR method. The execution 
times obtained with the 65 node structure are used to estimate the execution time for a structure 
of 1’000 nodes. 
 

Table 6: complexity analysis of the DR and transient stiffness algorithms    
Algorithm  Complexity   Execution time for  

n = 65 
Constant c Estimated execution 

time for n = 1000 
DR   O(n) 0.54 = c . 65 8.3·10-3 8.3 seconds  
Transient stiffness   O(n3) 4.55 = c . 653 1.6·10-5 4.6 hours  

 
Table 6 shows the results for execution time estimations. The DR algorithm execution time 
estimated at approximately 8.3 seconds is much smaller than the execution time of the transient 
stiffness algorithm (around 4.6 hours). This example shows that the DR algorithm is more 
efficient for large structures. However, execution time evaluated for the two methods should be 
considered as estimations since convergence is also dependent on the degree of non linearity of 
the structure. Furthermore, further enhancement of both transient stiffness and DR methods may 
alter the values in the last column of Table 6 [48, 55]. However, trends will be the same.   
 
Load-response of the clustered tensegrity beam is also investigated employing both DR and 
transient stiffness methods. The tensegrity beam is subjected to a vertical load applied at nodes 
18 and 23. The load-displacement curves obtained by the proposed DR method and transient 
stiffness method based on Moored and Bart-Smith formulation [35] are compared in Fig. 7. It can 
be seen that the results predicted by the DR method are identical to those generated by the 
transient stiffness method. 
 
Load-displacement curves of the clustered tensegrity beam obtained employing modified and 
unmodified dynamic relaxation are compared in Fig.8. This comparison reveals that predicted 
displacement are under estimated if the effect of cable clustering is not considered in the analysis.   
Results indicate that the clustered beam is about 55% more flexible than an equivalent 



Bel Hadj Ali, Nizar, Rhode-Barbarigos, Landolf and Smith, Ian F.C., “Analysis of clustered tensegrity structures 
using a modified dynamic relaxation algorithm” International Journal of Solids and Structures, In Press.  

 
 

 18

configuration having discontinuous cables. This suggests that the nonlinear behaviour induced by 
large displacements is more accentuated in clustered tensegrity structures.     
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Figure 7. Load-displacement curves of the clustered 
tensegrity beam 
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modified and unmodified DR 

 
 
 
4.2 Deployable two-module tensegrity structure     
 
A two-module tensegrity structure is studied in this section. The structure is assembled from two 
identical qudruplex modules with four bar-to-bar connections (Fig.(9)). The structure has 8 struts 
held in space by 20 cables where the middle four saddle cables are shared by the two modules. 
Each two vertical cable elements running through top and bottom modules are grouped into one 
continuous cable running frictionnlessly through a pulley attached to the four nodes connecting 
the two modules.    
 
Perspective and top views of the tensegrity structure are presented in Fig.(9) where dashed lines 
denotes the four cable clusters. For this study cable clusters are progressively actuated to achieve 
compacting and folding of the tensegrity structure. Compacting consists on unfolding the 
structure from its nominal configuration, corresponding to the operating conditions to an almost 
flat configuration. Deployment is achieved via opposite operation. Compacting and deployment 
of the tensegrity structure have to be performed such that all cables are maintained in tension and 
the bars do not touch each other. 
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Figure 9. Perspective and top views of the two-module tensegrity structure 
 
The tensegrity structure used in this example has a nominal height of 80cm. Struts are made of 
aluminum hollow tubes with a length of 100cm. The middle four saddle cables are replaced by 
four spring elements with a constant of 0.2kN/cm and a free length of 40cm. Top and bottom 
saddle cables has a rest length of 80cm. The four cable clusters have a rest length of 60cm. All 
cable members are made of stainless-steel. The characteristics of members are the same as for the 
tensegrity beam studied in the previous section (Table 4). Apart from self-weight, no external 
forces are taken into account. The four bottom nodes of the tensegrity structure are constrained. 
Node 1 is blocked in three translation directions; node 2 is blocked in y and z directions while 
nodes 3 and 4 are blocked in the z direction only.      
  
Cable-based control is employed to fold and deploy the tensegrity structure. This is numerically 
simulated by shortening and elongating rest lengths of the four cable clusters. First, the structure 
is folded by progressively shortening active cables in steps of 0.5mm. The procedure is 
terminated when strut interference is detected. Bar collision is prevented through measuring the 
distance between struts at every step in the deployment process. The minimal accepted distance 
between two struts is taken to be 3cm. The reverse procedure is employed for deployment where 
the active cables are released progressively and the structure unfolds to its nominal configuration 
due to the energy stored in the spring elements during the compacting phase. Note that actuation 
is conducted in such way the structure goes through successive equilibrium configurations. In 
addition, cable-length adjustments are performed in slow and small steps to eliminate dynamic 
effects. Figure 10 shows three snapshots of the deployment process of the structure.  
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Figure 10. Snapshots of the deployment process of the two-stage tensegrity structure 

 
The actuation response obtained by the proposed DR method and transient stiffness method 
based on Moored and Bart-Smith formulation [35] are compared in Fig. 11. The height of the 
module is displayed with respect to the length of active cable clusters (Fig.11). It is observed that 
the results obtained through the modified DR are in a good agreement with those obtained by the 
transient stiffness method.    
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Figure 12. Internal force magnitudes in the tensegrity 

members during deployment 
 
The deployment study shows that the tensegrity structure can be compacted to 32% of its 
nominal height. The compacted height decreases to 15% if the loads due to self-weight are not 
taken in account in the deployment analysis.           
 
The evolution of the magnitude of the internal forces in the tensegrity members with respect to 
the structure height is displayed in Fig.12. It is shown that a relatively small level of self-stress is 
sufficient to ensure the stability of the tensegrity structure subjected only to its self-weight loads. 
In the compacted configuration, the level of self-stress in the structure increases. The elastic 
energy of the structure is mainly stored in spring elements. The comparison between the structure 
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energy of the nominal and the compacted configurations gives insight into the energy needed for 
compacting process. Energy calculation show that for the clustered tensegrity, the energy needed 
for compacting is about 2.8kJ. For an equivalent configuration without continuous cables this 
energy is approximately in the same range (2.81kJ). Even if clustering did not reduce the energy 
needed for deployment, it considerably reduces actuation complexity, since clustering allows for 
a reduction in the number of actuators. In addition, for this configuration, actuators can be placed 
at the extremity of the structure. Technical difficulties related to embedded cable actuation are 
thus avoided. 
 
5. Conclusions  
 
Dynamic relaxation is an attractive static analysis method for tensile and tensegrity structures. 
The method is extended here to accommodate clustered tensegrity structures. In cable-based 
actuation of tensegrity structures, the deficiency of having to control too many cable elements can 
be overcome by connecting several cables. Continuous cables are thus used instead of 
discontinuous members. Clustered cables are assumed to run without friction through structural 
nodes. The concept of cable clustering is a scalable solution that can be employed for active 
structures that incorporate many active elements in order to reduce the number of actuators 
needed for active control and deployment. However, clustering cables significantly changes the 
mechanics of classical tensegrity structures and this leads to new challenges for structural 
analysis, control and actuation. This study shows that the uncoupled nature of the DR process 
makes it particularly attractive to apply to structures with clustered cable elements. The 
performance of the method compares favorably with the transient stiffness method. Two 
numerical examples show that the predictions of the modified DR method are in good agreement 
with those generated by the transient stiffness method. Finally, the DR method scales up to larger 
structures more efficiently due to lower computational complexity.     
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