98 research outputs found

    Predation pressures on sooty terns by cats, rats and common mynas on Ascension Island in the South Atlantic

    Get PDF

    Eggshell pigment composition covaries with phylogeny but not with life history or with nesting ecology traits of British passerines

    Get PDF
    No single hypothesis is likely to explain the diversity in eggshell coloration and patterning across birds, suggesting that eggshell appearance is most likely to have evolved to fulfill many nonexclusive functions. By controlling for nonindependent phylogenetic associations between related species, we describe this diversity using museum eggshells of 71 British breeding passerine species to examine how eggshell pigment composition and concentrations vary with phylogeny and with life-history and nesting ecology traits. Across species, concentrations of biliverdin and protoporphyrin, the two main pigments found in eggshells, were strongly and positively correlated, and both pigments strongly covaried with phylogenetic relatedness. Controlling for phylogeny, cavity-nesting species laid eggs with lower protoporphyrin concentrations in the shell, while higher biliverdin concentrations were associated with thicker eggshells for species of all nest types. Overall, these relationships between eggshell pigment concentrations and the biology of passerines are similar to those previously found in nonpasserine eggs, and imply that phylogenetic dependence must be considered across the class in further explanations of the functional significance of avian eggshell coloration

    Garden bird feeding: Insights and prospects from a north-south comparison of this global urban phenomenon

    Get PDF
    Intentional feeding of wild birds in gardens or backyards is one of the most popular forms of human–wildlife interactions in the developed world, especially in urban environments. The scale and intensity of bird feeding are enormous with mainly birdseed consumed daily by a range of species. This represents a subsidy to natural diets of birds attracted to the feeders and typically involves novel dietary components. Yet, relatively little is known about how it influences the behavior and ecology of the species visiting feeders. In part, research has been hampered by logistical difficulties of working in urban areas but studies have demonstrated powerful influences on behavior and phenology of avian breeding, the spread of disease, and the structure of avian communities. Here, we compare bird feeding between Northern and Southern Hemispheres as a means of exploring how similarities and differences in avian responses might inform knowledge of this global urban phenomenon. We start by tracing its origins to north-western Europe and how its expansion has occurred before considering how geographical differences in feeding practices and attitudes map onto bird feeding “on the ground.” We explore some of the major emerging themes of recent interest, including why citizens are motivated to feed birds, whether birds become fully dependent on food supplements, the role of feeding in avian disease transmission, and how feeding changes urban bird communities. By proposing that scientists work in collaboration with the public providing food to birds, we pose key research questions that need to be answered urgently and suggest accompanying experimental approaches to do so. These approaches are essential if we are to improve our understanding of how bird feeding shapes the behavior, ecology, movements, and community structure of urban birds. Our hope is that through such citizen science we will be able to provide advice as to location-relevant practices that should maximize benefits to both urban biodiversity and human well-being, and minimize potential adverse impacts. We demonstrate that bird feeding is important for urban biodiversity conservation, community engagement, and in establishing personal connections with nature and their associated benefits.Full Tex

    Eggshell pigment composition covaries with phylogeny

    Full text link
    No single hypothesis is likely to explain the diversity in eggshell coloration and patterning across birds, suggesting that eggshell appearance is most likely to have evolved to fulfill many nonexclusive functions. By controlling for nonindependent phylogenetic associations between related species, we describe this diversity using museum eggshells of 71 British breeding passerine species to examine how eggshell pigment composition and concentrations vary with phylogeny and with life-history and nesting ecology traits. Across species, concentrations of biliverdin and protoporphyrin, the two main pigments found in eggshells, were strongly and positively correlated, and both pigments strongly covaried with phylogenetic relatedness. Controlling for phylogeny, cavity-nesting species laid eggs with lower protoporphyrin concentrations in the shell, while higher biliverdin concentrations were associated with thicker eggshells for species of all nest types. Overall, these relationships between eggshell pigment concentrations and the biology of passerines are similar to those previously found in nonpasserine eggs, and imply that phylogenetic dependence must be considered across the class in further explanations of the functional significance of avian eggshell coloration
    • …
    corecore