138 research outputs found

    Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege

    Full text link
    Microglial cells maintain the immunological integrity of the healthy brain and can exert protection from traumatic injury. During ischemic tissue damage such as stroke, peripheral immune cells acutely infiltrate the brain and may exacerbate neurodegeneration. Whether and how microglia can protect from this insult is unknown. Polymorphonuclear neutrophils (PMNs) are a prominent immunologic infiltrate of ischemic lesions in vivo. Here, we show in organotypic brain slices that externally applied invading PMNs massively enhance ischemic neurotoxicity. This, however, is counteracted by additional application of microglia. Time-lapse imaging shows that microglia exert protection by rapid engulfment of apoptotic, but, strikingly, also viable, motile PMNs in cell culture and within brain slices. PMN engulfment is mediated by integrin- and lectin-based recognition. Interference with this process using RGDS peptides and N-acetyl-glucosamine blocks engulfment of PMNs and completely abrogates the neuroprotective function of microglia. Thus, engulfment of invading PMNs by microglia may represent an entirely new mechanism of CNS immune privilege

    Improving Refrigerant Flammability Limit Test Methods Based on ASTM E681

    Get PDF
    An improved test method for refrigerant flammability limit measurements is presented. Such measurements are essential for determining the lower flammability limits of refrigerants, and thus their safety classifications. Predicated on expert interviews and experiments, several changes to ASTM E681 and related standards are recommended, as follows. The 12 L glass vessel should be replaced with transparent polycarbonate (or other transparent plastic) to eliminate etching by HF and to facilitate vessel penetrations. The orientation of the electrode supports and the temperature probe should be changed from vertical to horizontal to prevent flame quenching. Venting should not occur before the flame stops propagating near the vessel wall. All penetrations should be removed from the rubber stopper, it should be weighted for a total mass of 2.5 kg, and the initial pressure should be 90 kPa absolute. The flame angle should be plotted versus refrigerant concentration, whereby a least-squares line determines the flammability limit at a flame angle of 90°. Finally, the vessel pressure should be measured during each test to evaluate the pressure rise during flame propagation and to help identify the onset of venting. These changes are relatively easy to implement and they improve the test precision and reproducibility without significantly changing previously established flammability limits

    First Measurement of the Transverse Spin Asymmetries of the Deuteron in Semi-Inclusive Deep Inelastic Scattering

    Full text link
    First measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarized 6-LiD target are presented. The data were taken in 2002 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. The Collins asymmetry turns out to be compatible with zero, as does the measured Sivers asymmetry within the present statistical errors.Comment: 6 pages, 2 figure

    Aβ Mediated Diminution of MTT Reduction—An Artefact of Single Cell Culture?

    Get PDF
    The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) reduction assay is a frequently used and easily reproducible method to measure beta-amyloid (Aβ) toxicity in different types of single cell culture. To our knowledge, the influence of Aβ on MTT reduction has never been tested in more complex tissue. Initially, we reproduced the disturbed MTT reduction in neuron and astroglia primary cell cultures from rats as well as in the BV2 microglia cell line, utilizing four different Aβ species, namely freshly dissolved Aβ (25-35), fibrillar Aβ (1-40), oligomeric Aβ (1-42) and oligomeric Aβ (1-40). In contrast to the findings in single cell cultures, none of these Aβ species altered MTT reduction in rat organotypic hippocampal slice cultures (OHC). Moreover, application of Aβ to acutely isolated hippocampal slices from adult rats and in vivo intracerebroventricular injection of Aβ also did not influence the MTT reduction in the respective tissue. Failure of Aβ penetration into the tissue cannot explain the differences between single cells and the more complex brain tissue. Thus electrophysiological investigations disclosed an impairment of long-term potentiation (LTP) in the CA1 region of hippocampal slices from rat by application of oligomeric Aβ (1-40), but not by freshly dissolved Aβ (25-35) or fibrillar Aβ (1-40). In conclusion, the experiments revealed a glaring discrepancy between single cell cultures and complex brain tissue regarding the effect of different Aβ species on MTT reduction. Particularly, the differential effect of oligomeric versus other Aβ forms on LTP was not reflected in the MTT reduction assay. This may indicate that the Aβ oligomer effect on synaptic function reflected by LTP impairment precedes changes in formazane formation rate or that cells embedded in a more natural environment in the tissue are less susceptible to damage by Aβ, raising cautions against the consideration of single cell MTT reduction activity as a reliable assay in Alzheimer's drug discovery studies

    Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs

    Get PDF
    We present a determination of the gluon polarization Delta G/G in the nucleon, based on the helicity asymmetry of quasi-real photoproduction events, Q^2<1(GeV/c)^2, with a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarized muon beam scattered on a polarized 6-LiD target. The helicity asymmetry for the selected events is = 0.002 +- 0.019(stat.) +- 0.003(syst.). From this value, we obtain in a leading-order QCD analysis Delta G/G=0.024 +- 0.089(stat.) +- 0.057(syst.) at x_g = 0.095 and mu^2 =~ 3 (GeV}/c)^2.Comment: 10 pages, 3 figure

    Measurement of the Spin Structure of the Deuteron in the DIS Region

    Full text link
    We present a new measurement of the longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 < Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised 6-LiD target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 < x < 0.03.Comment: 10 pages, 6 figures, subm. to PLB, revised: author list, Fig. 4, details adde

    Kidney Pathology Precedes and Predicts the Pathological Cascade of Cerebrovascular Lesions in Stroke Prone Rats

    Get PDF
    INTRODUCTION: Human cerebral small vessel disease (CSVD) has been hypothesized to be an age-dependent disease accompanied by similar vascular changes in other organs. SHRSP feature numerous vascular risk factors and may be a valid model of some aspects of human CSVD. Here we compare renal histopathological changes with the brain pathology of spontaneously hypertensive stroke-prone rats (SHRSP). MATERIAL AND METHODS: We histologically investigated the brains and kidneys of 61 SHRSP at different stages of age (12 to 44 weeks). The brain pathology (aggregated erythrocytes in capillaries and arterioles, microbleeds, microthromboses) and the kidney pathology (aggregated erythrocytes within peritubular capillaries, tubular protein cylinders, glomerulosclerosis) were quantified separately. The prediction of the brain pathology by the kidney pathology was assessed by creating ROC-curves integrating the degree of kidney pathology and age of SHRSP. RESULTS: Both, brain and kidney pathology, show an age-dependency and proceed in definite stages whereas an aggregation of erythrocytes in capillaries and arterioles, we parsimoniously interpreted as stases, represent the initial finding in both organs. Thus, early renal tubulointerstitial damage characterized by rather few intravasal erythrocyte aggregations and tubular protein cylinders predicts the initial step of SHRSPs' cerebral vascular pathology marked by accumulated erythrocytes. The combined increase of intravasal erythrocyte aggregations and protein cylinders accompanied by glomerulosclerosis and thrombotic renal microangiopathy in kidneys of older SHRSP predicts the final stages of SHRSPs' cerebrovascular lesions marked by microbleeds and thrombotic infarcts. CONCLUSION: Our results illustrate a close association between structural brain and kidney pathology and support the concept of small vessel disease to be an age-dependent systemic pathology. Further, an improved joined nephrologic and neurologic diagnostic may help to identify patients with CSVD at an early stage

    A Model of Ischemia-Induced Neuroblast Activation in the Adult Subventricular Zone

    Get PDF
    We have developed a rat brain organotypic culture model, in which tissue slices contain cortex-subventricular zone-striatum regions, to model neuroblast activity in response to in vitro ischemia. Neuroblast activation has been described in terms of two main parameters, proliferation and migration from the subventricular zone into the injured cortex. We observed distinct phases of neuroblast activation as is known to occur after in vivo ischemia. Thus, immediately after oxygen/glucose deprivation (6–24 hours), neuroblasts reduce their proliferative and migratory activity, whereas, at longer time points after the insult (2 to 5 days), they start to proliferate and migrate into the damaged cortex. Antagonism of ionotropic receptors for extracellular ATP during and after the insult unmasks an early activation of neuroblasts in the subventricular zone, which responded with a rapid and intense migration of neuroblasts into the damaged cortex (within 24 hours). The process is further enhanced by elevating the production of the chemoattractant SDf-1α and may also be boosted by blocking the activation of microglia. This organotypic model which we have developed is an excellent in vitro system to study neurogenesis after ischemia and other neurodegenerative diseases. Its application has revealed a SOS response to oxygen/glucose deprivation, which is inhibited by unfavorable conditions due to the ischemic environment. Finally, experimental quantifications have allowed us to elaborate a mathematical model to describe neuroblast activation and to develop a computer simulation which should have promising applications for the screening of drug candidates for novel therapies of ischemia-related pathologies

    Tag-Trigger-Consolidation: A Model of Early and Late Long-Term-Potentiation and Depression

    Get PDF
    Changes in synaptic efficacies need to be long-lasting in order to serve as a substrate for memory. Experimentally, synaptic plasticity exhibits phases covering the induction of long-term potentiation and depression (LTP/LTD) during the early phase of synaptic plasticity, the setting of synaptic tags, a trigger process for protein synthesis, and a slow transition leading to synaptic consolidation during the late phase of synaptic plasticity. We present a mathematical model that describes these different phases of synaptic plasticity. The model explains a large body of experimental data on synaptic tagging and capture, cross-tagging, and the late phases of LTP and LTD. Moreover, the model accounts for the dependence of LTP and LTD induction on voltage and presynaptic stimulation frequency. The stabilization of potentiated synapses during the transition from early to late LTP occurs by protein synthesis dynamics that are shared by groups of synapses. The functional consequence of this shared process is that previously stabilized patterns of strong or weak synapses onto the same postsynaptic neuron are well protected against later changes induced by LTP/LTD protocols at individual synapses
    corecore