34 research outputs found
Acute and delayed sulfur mustard toxicity; novel mechanisms and future studies
Sulfur mustard (SM), also known as mustard gas, has been the most widely used chemical weapon. The toxicity of SM as an incapacitating agent is of much greater importance than its ability to cause lethality. Acute toxicity of SM is related to reactive oxygen and nitrogen species, DNA damage, poly(ADP-ribose) polymerase activation and energy depletion within the affected cell. Therefore melatonin shows beneficial effects against acute SM toxicity in a variety of manner. It scavenges most of the oxygen- and nitrogen-based reactants, inhibits inducible nitric oxide synthase, repairs DNA damage and restores cellular energy depletion. The delayed toxicity of SM however, currently has no mechanistic explanation. We propose that epigenetic aberrations may be responsible for delayed detrimental effects of mustard poisoning. Epigenetic refers to the study of changes that influence the phenotype without causing alteration of the genotype. It involves changes in the properties of a cell that are inherited but do not involve a change in DNA sequence. It is now known that in addition to genetic mutations, epimutations can also involve in the pathogenesis of a variety of human diseases. Several actions of melatonin are now delineated by epigenetic actions including modulation of histone acetylation and DNA methylation. Future studies are warranted to clarify whether epigenetic mechanisms are involved in pathogenesis of delayed sulfur mustard toxicity and melatonin alleviates delayed toxicity of this warfare agent
Seroprevalence of T. Cruzi infection in blood donors and chagas cardiomyopathy in patients from the coal mining region of coahuila, Mexico
Context and Objective: Chagas disease is considered a worldwide emerging disease; it is endemic in Mexico and the state of Coahuila and is considered of little relevance. The objective of this study was to determine the seroprevalence of T. cruzi infection in blood donors and Chagas cardiomyopathy in patients from the coal mining region of Coahuila, Mexico. Design and Setting:
Epidemiological, exploratory and prospective study in a general hospital during the period January to June 2011. Methods: We performed laboratory tests ELISA and indirect hemagglutination in three groups of individuals: 1) asymptomatic voluntary blood donors, 2) patients hospitalized in the cardiology department and 3) patients with dilated cardiomyopathy. Results: There were three
levels of seroprevalence: 0.31% in asymptomatic individuals, 1.25% in cardiac patients and in patients with dilated cardiomyopathy in 21.14%. Conclusions: In spite of having detected autochthonous cases of Chagas disease, its importance to local public health
remains to be established as well as the details of the dynamics of transmission so that the study is still in progress
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
Funder: Funder: Fundación bancaria ‘La Caixa’ Number: LCF/PR/PR16/51110003 Funder: Grifols SA Number: LCF/PR/PR16/51110003 Funder: European Union/EFPIA Innovative Medicines Initiative Joint Number: 115975 Funder: JPco-fuND FP-829-029 Number: 733051061Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease
Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes
Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues
Cardiometabolic Changes in Different Gonadal Female States Caused by Mild Hyperuricemia and Exposure to a High-Fructose Diet
Background. The objective of this study is to observe if mild hyperuricemia and a high-fructose diet influence the cardiovascular and metabolic systems in hypogonadic female Wistar rats compared to normogonadic female rats. Methods. Fifty-six (56) adult female Wistar rats were used in the present work. Animals were divided into two groups: normogonadic (NGN) and hypogonadic (HGN). These groups were also divided into four subgroups in accordance with the treatment: control with only water (C), fructose (F), oxonic acid (OA), and fructose + oxonic acid (FOA). Lipid profile, glycemia, uric acid, and creatinine determinations were assessed. Cardiovascular changes were evaluated by measuring blood pressure, myocyte volume, fibrosis, and intima-media aortic thickness. Results. HGN rats had higher levels of total cholesterol (TC) (p<0.01) and noHDLc (p<0.01), in addition to higher levels of uric acid (p<0.05). The OA group significantly increased myocyte volume (p<0.0001) and the percentage of fibrosis as well as the group receiving FOA (p<0.001) in both gonadal conditions, being greater in the HGN group. Hypogonadic animals presented a worse lipid profile. Conclusion. Mild hyperuricemia produces hypertension together with changes in the cardiac hypertrophy, fibrosis, and increased thickness of the intima media in hypogonadic rats fed high-fructose diet
Effect of melatonin treatment on oxygen consumption by rat liver mitochondria
The objective of this study was to examine the in vivo effect of melatonin on rat mitochondrial liver respiration. Two experiments were performed: For experiment 1, adult male rats received melatonin in the drinking water (16 or 50 mg=ml) & vehicle during 45 days. For experiment 2, rats received melatonin in the drinking water (50 mg=ml) for 45 days, or the same amount for 30 days followed by a 15 day-withdrawal period. At sacrifice, a liver mitochondrial fraction was prepared and oxygen consumption was measured polarographically in the presence of excess concentration of DL-3-b-hydroxybutyrate or L-succinate. Melatonin treatment decreased Krebs’ cycle substrate-induced respiration significantly at both examined doses. The stimulation of mitochondrial respiration caused by excess concentration of substrate recovered after melatonin withdrawal. Basal state 4 respiration was not modified by melatonin. Melatonin, by curtailing overstimulation of cellular respiration caused by excess Krebs’ cycle substrates, can protect the mitochondria from oxidative damage.Fil: Reyes Toso, Carlos Felipe. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Rebagliati, Ines Rosa. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ricci, C. R.. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Linares, L. M.. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Albornoz, L. E.. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Cardinali, Daniel Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Zaninovich, A.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
A Genome-Sequence Survey for Ascogregarina taiwanensis Supports Evolutionary Affiliation but Metabolic Diversity between a Gregarine and Cryptosporidium
We have performed a whole-genome-sequence survey for the gregarine, Ascogregarina taiwanensis and herein describe both features unique to this early diverging apicomplexan and properties that unite it with Cryptosporidium, the Coccidia, and the Apicomplexa. Phylogenetic trees inferred from a concatenated protein sequence comprised of 10,750 amino acid positions, as well as the large subunit rRNA genes, robustly support phylogenetic affinity of Ascogregarina with Cryptosporidium at the base of the apicomplexan clade. Unlike Cryptosporidium, Ascogregarina possesses numerous mitochondrion-associated pathways and proteins, including enzymes within the Krebs cycle and a cytochrome-based respiratory chain. Ascogregarina further differs in the capacity for de novo synthesis of pyrimidines and amino acids. Ascogregarina shares with Cryptosporidium a Type I fatty acid synthase and likely a polyketide synthase. Cryptosporidium and Ascogregarina possess a large repertoire of multidomain surface proteins that align it with Toxoplasma and are proposed to be involved in coccidian-like functions. Four families of retrotransposable elements were identified, and thus, retroelements are present in Ascogregarina and Eimeria but not in other apicomplexans that have been analyzed. The sum observations suggest that Ascogregarina and Cryptosporidium share numerous molecular similarities, not only including coccidian-like features to the exclusion of Haemosporidia and Piroplasmida but also differ from each other significantly in their metabolic capacity