27 research outputs found

    Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes

    Get PDF
    Penetrance of variants in monogenic disease and clinical utility of common polygenic variation has not been well explored on a large-scale. Here, the authors use exome sequencing data from 77,184 individuals to generate penetrance estimates and assess the utility of polygenic variation in risk prediction of monogenic variants

    Analysis of protein-coding genetic variation in 60,706 humans

    Get PDF
    Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. We describe the aggregation and analysis of high-quality exome (protein-coding region) sequence data for 60,706 individuals of diverse ethnicities generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of truncating variants with 72% having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human “knockout” variants in protein-coding genes

    Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms

    Get PDF
    Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. Video Abstract [Figure presented] Keywords: type 2 diabetes (T2D); genetics; disease mechanism; SLC16A11; MCT11; solute carrier (SLC); monocarboxylates; fatty acid metabolism; lipid metabolism; precision medicin

    Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes

    Get PDF
    Hundreds of thousands of genetic variants have been reported to cause severe monogenic diseases, but the probability that a variant carrier develops the disease (termed penetrance) is unknown for virtually all of them. Additionally, the clinical utility of common polygenetic variation remains uncertain. Using exome sequencing from 77,184 adult individuals (38,618 multi-ancestral individuals from a type 2 diabetes case-control study and 38,566 participants from the UK Biobank, for whom genotype array data were also available), we apply clinical standard-of-care gene variant curation for eight monogenic metabolic conditions. Rare variants causing monogenic diabetes and dyslipidemias display effect sizes significantly larger than the top 1% of the corresponding polygenic scores. Nevertheless, penetrance estimates for monogenic variant carriers average 60% or lower for most conditions. We assess epidemiologic and genetic factors contributing to risk prediction in monogenic variant carriers, demonstrating that inclusion of polygenic variation significantly improves biomarker estimation for two monogenic dyslipidemias

    Hypoglycemic effect of Toumefortia hirsutissima L., on n-streptozotocin diabetic rats

    No full text
    The hypoglycemic effect of aqueous and butanolic extracts from Tournefortia hirsutissima (Boraginaceae) was determined on neonatal induced streptozotocin diabetic rats (n-STZ). Oral administration of water extracts at doses of 20 and 80 mg/kg, and butanolic extracts (8 and 80 mg/kg) significantly lowered the plasma glucose levels in diabetic rats within 3 It. Glibenclamide was used as reference and showed similar hypoglycemic effect. Our results support the traditional use of the plant as a hypoglycemic agen

    Tumor necrosis factor haplotype diversity in Mestizo and Native populations of Mexico

    No full text
    The so-called tumor necrosis factor (TNF) block includes the TNFA, lymphotoxin alpha and beta (LTA and LTB) genes with single-nucleotide polymorphisms (SNP) and microsatellites with an allele frequency that exhibits interpopulation variability. To date, no reports have included both SNPs and microsatellites at the TNF block to study Mestizo or Amerindian populations from Mexico. In this study, samples of five Mexican Mestizo populations (Durango, Guadalajara, Monterrey, Puebla, and Tierra Blanca) and four native-Mexican populations (North Lacandonians, South Lacandonians, Tepehuanos, and Yaquis) were genotyped for two SNPs (LTA+252A>G and TNFA-308G>A) and four microsatellites (TNFa, d, e, and f), to analyze the genetic substructure of the Mexican population. Allele and haplotype frequencies, linkage disequilibrium (LD), and interpopulation genetic relationships were calculated. There was significant LD along almost all of the TNF block but the lowest D' values were observed for the TNFf-TNFd pair. Mestizos showed higher allele and haplotype diversity than did natives. The genetic differentiation level was reduced among Mestizos; however, a slightly, but significant genetic substructure was observed between northern and southern Mexican Mestizos. Among the Amerindian populations, the genetic differentiation level was significantly elevated, particularly in both North and South Lacandonians. Furthermore, among Southern Lacandonians, inhabitants of Lacanja town were the most differentiated from all the Mexicans analyzed. The data presented here will serve as a reference for further population and epidemiological studies including these TNF polymorphisms in the Mexican population. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
    corecore