466 research outputs found

    Post-rift sequence architecture and stratigraphy in the Oligo-Miocene Sardinia rift (Western Mediterranean Sea)

    Get PDF
    Rift basins provide important sedimentary archives to reconstruct past tectonic and climatic conditions. Understanding their sedimentary history is, however, largely hampered by the competing influence of tectonic versus climatic forcing. The aim of this study is to comprehend the effects of local to regional tectonic and global climatic/eustatic changes on shallow marine depositional systems in the Sardinia Rift (Western Mediterranean Sea). For this purpose the stratigraphic and depositional relations of a mixed siliciclastic-carbonate ramp at the Porto Torres Basin margin were studied along extensive proximal to distal transects. Three depositional sequences (DS1 to DS3) of late Burdigalian to early Serravallian age have been identified, which are separated by erosional unconformities. Each contains a lower trans- gressive part and an upper regressive part. The former includes shoreface sandstone (DS2) or coral reef (DS3) deposits on the proximal ramp and channelized sheet sandstone (DS1) or basinal mudstone (DS2, DS3) deposits on the distal ramp, typically recording an upsection trend of sediment starvation. The latter is represented by basinward-prograding coralline red algal carbonate wedges due to enhanced shallow water carbonate production rates. In the long term, the depositional evolution from DS1 to DS3 reveals basin margin progradation associated with decreasing siliciclastic supply. Integrated calcareous nannoplankton-foraminiferal-pectinid biostratigraphy links the depositional sequences to third-order sea-level cycles and allows to correlate the erosional unconformities at the top of DS1 and DS2 with the Bur 5/Lan 1 and Lan 2/Ser 1 sequence boundaries. The improved sequence stratigraphic framework enables better regional and global correlations. This shows that rhodalgal carbonate slopes started prograding in the western branch of the Sardinia Rift during the late Burdigalian because (1) of a worldwide bloom of rhodalgal facies, and (2) decreasing tectonic activity at the transition from the syn- rift to the post-rift stage caused a continuous reduction of the siliciclastic sediment input

    Coastal landscape evolution in the Wilpattu National Park (NW Sri Lanka) linked to changes in sediment supply and rainfall across the Pleistocene–Holocene transition

    Get PDF
    Coastal sand dunes are sediment archives which can be used to reconstruct periods of aridity and humidity, past wind strength and variations in the sediment supply related to sea-level changes. In this manner, the sedimentary record of fossil coastal dunes in Sri Lanka provides evidence for environmental and climatic changes during the late Pleistocene and Holocene. As yet, these environmental shifts are poorly resolved because the sedimentary facies and their depositional architecture have not been studied and only very few age constraints are available. Facies analysis of a lithological section at the Point Kurdimalai sea cliff in the Wilpattu National Park (NW Sri Lanka) reveals a striking resemblance to the stratigraphic succession associated with the Teri Sands in southeastern India, which is better dated. The reason is that deposition occurred under the same geological, climatic and geomorphological conditions in the two regions. This special situation allows for litho- and climate stratigraphic correlations across the Gulf of Mannar and links the landscape evolution at Point Kudrimalai to late Quaternary climatic events and sea-level changes. Our results show that the formation of red coastal dunes (Red Beds) in Sri Lanka was a multi-phase process across the Pleistocene–Holocene boundary and hence the differentiation between an Older Group of Plio-Pleistocene age (including the Red Beds) and a Younger Group of Holocene age in the Quaternary stratigraphic chart for Sri Lanka is not justified

    Silver Complexes of Azobenzene and Derivatives

    Get PDF
    Thirty four silver(I) complexes of azobenzene and derivatives have been synthesised, only two of which have been previously published. The azobenzene derivatives used are 2-bromo, 3-bromo, 4-bromo, 3,4’-dibromo, 2,4’-dibromo, 3-nitro, 4-dimethylamino, 4-methoxy, 2,6-dimethyl-4’-chloro, 2,6,2’,6’-tetramethyl and 2,2’-ethyleneazobenzene. 2,2’- and 4,4’-azobispyridine were also used along with diphenyltriazine. Six different silver(I) salts were used to make the complexes; they are tetrafluoroborate, hexafluorophosphate, perchlorate, nitrate, triflate and trifluoroacetate. All of the complexes were analysed using X-ray crystallography. In the complexes with azobenzene the anion was the most crucial factor in determining the resulting structure, as five different molecular topologies were seen with each change of anion. The 2-bromoazobenzene containing complexes continue this trend giving similar topologies to the azobenzene containing complexes. Once we come to the 3-bromo and 4-bromoazobenzene, we get a different molecular topology for the hexafluorophosphate containing complexes when compared to the original azobenzene containing complex, but we see a very similar structure for the perchlorate containing complexes. This would suggest that the coordinating anions give more predictable structures than the non-coordinating anions. The trend continues with both the 3,4’-dibromo and 2,4’-dibromoazobenzene complexes with triflate being structurally similar to the previous triflate containing complexes. The trend is reinforced further with 3-nitro and 4-methoxyazobenzene showing similar structures to the previously discussed complexes. The complex containing 4-dimethylaminoazobenzene can be disregarded, as the ligand has become protonated and therefore is unlike all the previously described results. When we come to the sterically hindered ligands 2,6-dimethyl-4’-chloroazobenzene the first three complexes show the same molecular topology of a silver atom bound to two ligands with a coordinating anion, however once we come to a tridentate coordinating anion triflate a 1-D metallopolymer is observed. This breaks the trend, as the structures are similar regardless of the change in anion. A similar effect is seen in 2,6,2’,6’-tetramethylazobenzene with both structures standing alone as no complexes with a similar molecular topology were observed. This effect is again noted in the complexes containing 2,2’-ethyleneazobenzene. The complexes all form a similar structure regardless of the anion used. As expected the 2,2’- and 4,4’-azobispyridine along with diphenyltriazine do not follow the trend observed earlier with the non-sterically hindered ligands as they can coordinate through additional nitrogen atoms in the aromatic ring or in the case of diphenyltriazine an additional nitrogen atom in the triazine group

    Taking hospital pathogen surveillance to the next level

    Get PDF
    High-throughput bacterial genomic sequencing and subsequent analyses can produce large volumes of high-quality data rapidly. Advances in sequencing technology, with commensurate developments in bioinformatics, have increased the speed and efficiency with which it is possible to apply genomics to outbreak analysis and broader public health surveillance. This approach has been focused on targeted pathogenic taxa, such as Mycobacteria, and diseases corresponding to different modes of transmission, including food-and-water-borne diseases (FWDs) and sexually transmitted infections (STIs). In addition, major healthcare-associated pathogens such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci and carbapenemase-producing Klebsiella pneumoniae are the focus of research projects and initiatives to understand transmission dynamics and temporal trends on both local and global scales. Here, we discuss current and future public health priorities relating to genome-based surveillance of major healthcare-associated pathogens. We highlight the specific challenges for the surveillance of healthcare-associated infections (HAIs), and how recent technical advances might be deployed most effectively to mitigate the increasing public health burden they cause

    Superoxide dismutase mutations of familial amyotrophic lateral sclerosis and the oxidative inactivation of calcineurin

    Get PDF
    AbstractApproximately 10% of all familial cases of amyotrophic lateral sclerosis (fALS) are linked to mutations in the SOD1 gene, which encodes the copper/zinc superoxide dismutase (CuZnSOD). Recently, wild-type CuZnSOD was shown to protect calcineurin, a calcium/calmodulin-regulated phosphoprotein phosphatase, from inactivation by reactive oxygen species. We asked whether the protective effect of CuZnSOD on calcineurin is affected by mutations associated with fALS. For this, we monitored calcineurin activity in the presence of mutant and wild-type SOD. We found that the degree of protection against inactivation of calcineurin by different SOD mutants correlates with the severity of the phenotype associated with the different mutations, suggesting a potential role for calcineurin–SOD1 interaction in the etiology of fALS

    Environmental change impacts on the C- and N-cycle of European forests: a model comparison study [Discussion paper]

    Get PDF
    Forests are important components of the greenhouse gas balance of Europe. There is considerable uncertainty about how predicted changes to climate and nitrogen deposition will perturb the carbon and nitrogen cycles of European forests and thereby alter forest growth, carbon sequestration and N2O emission. The present study aimed to quantify the carbon and nitrogen balance, including the exchange of greenhouse gases, of European forests over the period 2010–2030, with a particular emphasis on the spatial variability of change. The analysis was carried out for two tree species: European beech and Scots pine. For this purpose, four different dynamic models were used: BASFOR, DailyDayCent, INTEGRATOR and Landscape-DNDC. These models span a range from semi-empirical to complex mechanistic. Comparison of these models allowed assessment of the extent to which model predictions depended on differences in model inputs and structure. We found a European average carbon sink of 0.160 ± 0.020 kgC m−2 yr−1 (pine) and 0.138 ± 0.062 kgC m−2 yr−1 (beech) and N2O source of 0.285 ± 0.125 kgN ha−1 yr−1 (pine) and 0.575 ± 0.105 kgN ha−1 yr−1 (beech). The European average greenhouse gas potential of the carbon source was 18 (pine) and 8 (beech) times that of the N2O source. Carbon sequestration was larger in the trees than in the soil. Carbon sequestration and forest growth were largest in central Europe and lowest in northern Sweden and Finland, N. Poland and S. Spain. No single driver was found to dominate change across Europe. Forests were found to be most sensitive to change in environmental drivers where the drivers were limiting growth, where changes were particularly large or where changes acted in concert. The models disagreed as to which environmental changes were most significant for the geographical variation in forest growth and as to which tree species showed the largest rate of carbon sequestration. Pine and beech forests were found to have differing sensitivities to environmental change, in particular the response to changes in nitrogen and precipitation, with beech forest more vulnerable to drought. There was considerable uncertainty about the geographical location of N2O emissions. Two of the models BASFOR and LandscapeDNDC had largest emissions in central Europe where nitrogen deposition and soil nitrogen were largest whereas the two other models identified different regions with large N2O emission. N2O emissions were found to be larger from beech than pine forests and were found to be particularly sensitive to forest growth

    Cold dust in a selected sample of nearby galaxies. I. The interacting galaxy NGC4631

    Full text link
    We have observed the continuum emission of the interacting galaxy NGC4631 at 0.87 and 1.23mm using the Heinrich-Hertz-Telescope on Mt. Graham and the IRAM 30-m telescope on Pico Veleta. We have obtained fully sampled maps which cover the optical emission out to a radius of about 7' at both wavelengths. For a detailed analysis, we carefully subtracted the line contributions and synchrotron and free-free emission from the data, which added up to 6% at 1.23mm and 10% at 0.87mm. We combined the flux densities with FIR data to obtain dust spectra and calculate dust temperatures, absorption cross sections, and masses. Assuming a ``standard'' dust model, which consists of two populations of big grains at moderate and warm temperatures, we obtained temperatures of 18K and 50K for the both components. However, such a model suffers from an excess of the radiation at 1.23mm, and the dust absorption cross section seems to be enhanced by a factor 3 compared to previous results and theoretical expectations. At large galactocentric radii, where the galaxy shows disturbances as a result of gravitational interaction, this effect seems to be even stronger. Some possibilities to resolve these problems are discussed. The data could be explained by a very cold dust component at a temperature of 4-6K, an increased abundance of very small grains, or a component of grains with unusual optical properties. We favour the latter possibility, since the first two lead to inconsistencies.Comment: 12 pages, 6 figures, accepted for publication in Astronomy & Astrophysics. Updated version with minor errors corrected (typos, LaTeX formatting, missing citation

    Exciton dephasing via phonon interactions in InAs quantum dots: dependence on quantum confinement

    Get PDF
    We report systematic measurements of the dephasing of the excitonic ground-state transition in a series of InGaAs?GaAs quantum dots having different quantum confinement potentials. Using a highly sensitive four-wave mixing technique, we measure the polarization decay in the temperature range from 5 to 120 K on nine samples having the energy distance from the dot ground-state transition to the wetting layer continuum (confinement energy) tuned from 332 to 69 meV by thermal annealing. The width and the weight of the zero-phonon line in the homogeneous line shape are inferred from the measured polarization decay and are discussed within the framework of recent theoretical models of the exciton-acoustic phonon interaction in quantum dots. The weight of the zero-phonon line is found to decrease with increasing lattice temperature and confinement energy, consistently with theoretical predictions by the independent Boson model. The temperature-dependent width of the zero-phonon line is well reproduced by a thermally activated behavior having two constant activation energies of 6 and 28 meV, independent of confinement energy. Only the coefficient to the 6-meV activation energy shows a systematic increase with increasing confinement energy. These findings rule out that the process of one-phonon absorption from the excitonic ground state into higher energy states is the underlying dephasing mechanism
    corecore