1,795 research outputs found

    Warm HCN, C2H2, and CO in the disk of GV Tau

    Get PDF
    We present the first high-resolution, ground-based observations of HCN and C2H2 toward the T Tauri binary star system GV Tau. We detected strong absorption due to HCN nu_3 and weak C2H2 (nu_3 and nu_2 + (nu_4 + nu_5)^0_+) absorption toward the primary (GV Tau S) but not the infrared companion. We also report CO column densities and rotational temperatures, and present abundances relative to CO of HCN/CO ~0.6% and C2H2/CO ~1.2% and an upper limit for CH4/CO < 0.37% toward GV Tau S. Neither HCN nor C2H2 were detected toward the infrared companion and results suggest that abundances may differ between the two sources.Comment: 23 pages, 6 figures, accepted by Ap

    Electron-phonon coupling in 122 Fe pnictides analyzed by femtosecond time-resolved photoemission

    Get PDF
    Based on results from femtosecond time-resolved photoemission, we compare three different methods for determination of the electron-phonon coupling constant {\lambda} in Eu and Ba-based 122 FeAs compounds. We find good agreement between all three methods, which reveal a small {\lambda} < 0.2. This makes simple electron-phonon mediated superconductivity unlikely in these compounds.Comment: 11 pages, 3 figure

    Erratum: Warm HCN, C2H2, and CO in the Disk of GV Tau\u27\u27

    Get PDF
    This is an Erratum for the article 2007 ApJ 660 157

    Near-Infrared Spectroscopic Study of V1647 Ori

    Get PDF
    We present new high-resolution infrared echelle spectra of V1647 Ori, the young star that illuminates McNeil\u27s nebula. From the start, V1647 Ori has been an enigmatic source that has defied classification, in some ways resembling eruptive stars of the FUor class and in other respects the EXor variables. V1647 Ori underwent an outburst in 2003 before fading back to its pre-outburst brightness in 2006. In 2008, it underwent a new outburst. In this paper we present high-resolution K-band and M-band spectra from the W. M. Keck Observatory that were acquired during the 2008 outburst. We compare the spectra to spectra acquired during the previous outburst and quiescent phases. We find that the luminosity and full width at half maximum power of Br-gamma increased as the star has brightened and decreased when the star faded indicating that these phases are driven by variations in the accretion rate. We also show that the temperature of the CO emission has varied with the stellar accretion rate confirming suggestions from modeling of the heating mechanisms of the inner disk (e.g. Glassgold et al. 2004). Finally we find that the lowest energy blue-shifted CO absorption lines originally reported in 2007 are no longer detected. The absence of these lines confirms the short-lived nature of the outflow launched at the start of the quiescent phase in 2006

    Munc18-1 promotes larger dense-core vesicle docking.

    Get PDF
    AbstractSecretory vesicles dock at the plasma membrane before Ca2+ triggers their exocytosis. Exocytosis requires the assembly of SNARE complexes formed by the vesicle protein Synaptobrevin and the membrane proteins Syntaxin-1 and SNAP-25. We analyzed the role of Munc18-1, a cytosolic binding partner of Syntaxin-1, in large dense-core vesicle (LDCV) secretion. Calcium-dependent LDCV exocytosis was reduced 10-fold in mouse chromaffin cells lacking Munc18-1, but the kinetic properties of the remaining release, including single fusion events, were not different from controls. Concomitantly, mutant cells displayed a 10-fold reduction in morphologically docked LDCVs. Moreover, acute overexpression of Munc18-1 in bovine chromaffin cells increased the amount of releasable vesicles and accelerated vesicle supply. We conclude that Munc18-1 functions upstream of SNARE complex formation and promotes LDCV docking

    The Upper Limit for CH4 in the Protostellar Disk toward HL Tauri

    Get PDF
    We used high-resolution infrared spectra of the heavily embedded T Tauri star HL Tau to search for evidence of absorption due to the R0, R1, and R2 gas-phase CH4 ν3 lines near 3.3 μm. From this, we report a 3 σ upper limit of 1.3 × 1015 cm-2 for the CH4 gas column density toward HL Tau. Our results are compared to those found for CO gas toward this source and to the recent model for chemistry in the inner (10 AU) disks around T Tauri stars by Markwick et al. We find that the upper limit of methane ice+gas column density toward HL Tau, when compared to CO, is somewhat lower than but consistent with that measured toward other interstellar sources (~1%) but that it is much lower than that predicted in the Markwick et al. model and much less than the CH4/CO ratio (10%-80%) found in cometary volatiles. This has important implications for the processing of interstellar material and its incorporation into planetary bodies
    corecore