Clemson University TigerPrints

Publications

Physics and Astronomy

10-1-2008

Erratum: "Warm HCN, C2H2, and CO in the Disk of GV Tau"

E L. Gibb

KA. VanBrunt

Sean D. Brittain Clemson University, sbritt@clemson.edu

TW. Rettig

Follow this and additional works at: https://tigerprints.clemson.edu/physastro_pubs Part of the <u>Astrophysics and Astronomy Commons</u>

Recommended Citation Please use publisher's recommended citation.

This Article is brought to you for free and open access by the Physics and Astronomy at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

ERRATUM: "WARM HCN, C₂H₂, AND CO IN THE DISK OF GV TAU" (ApJ, 660, 1572 [2007])

E. L. GIBB, K. A. VAN BRUNT, S. D. BRITTAIN, AND T. W. RETTIG

There is an error in the source identification in our *KL* and *M* band settings. The results change some quantitative aspects of our results, but do not affect our conclusions. HCN and C_2H_2 were detected toward the northern component (GV Tau N, or the IRC), rather than the southern component (GV Tau S). This does not affect the *K* band settings for which we were observing GV Tau S as stated in the paper. Since the *K* band settings were used to determine *N*(CO) and abundances were calculated relative to CO, this decreases our calculated abundances by a factor of 2. The values in the following table replace those in Table 2 of the paper. The HCN/CO and C_2H_2/CO symbols in Figure 6 should also decrease by a factor of 2. Our conclusion that the organics are located close to the host star (IRC rather than GV Tau S) rather than the circumbinary material is unchanged. Our discussion regarding the compositional similarity to chemical models, comets, and other sources is also unaffected.

TABLE 2 Column Densities and for Molecules		
Molecule	Column Density (10 ¹⁶ cm ⁻²)	Abundance Relative to ¹² CO (%)
	GV Tau N	
¹² CO	$\sim 1180^{a}$	
¹³ CO	11	0.93
C ¹⁸ O	1.4 ± 0.5	0.12
HCN	3.7 ± 0.3	0.31
C ₂ H ₂	$7.3^{+0.1}_{-0.2}$	0.62
CH ₄	<2.2	< 0.19
	GV Tau S	
¹² CO	590 ± 120	
¹³ CO	5.5	0.93 ^a
HCN	< 0.48	< 0.08

^a Assuming ¹²CO/¹³CO ratio is the same as for GV Tau S.