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ABSTRACT

We used high-resolution infrared spectra of the heavily embedded T Tauri star HL Tau to search for evidence
of absorption due to theR0, R1, andR2 gas-phase CH4 lines near 3.3mm. From this, we report a 3j uppern3

limit of cm�2 for the CH4 gas column density toward HL Tau. Our results are compared to those151.3# 10
found for CO gas toward this source and to the recent model for chemistry in the inner (10 AU) disks around
T Tauri stars by Markwick et al. We find that the upper limit of methane ice�gas column density toward HL
Tau, when compared to CO, is somewhat lower than but consistent with that measured toward other interstellar
sources (∼1%) but that it is much lower than that predicted in the Markwick et al. model and much less than
the CH4/CO ratio (10%–80%) found in cometary volatiles. This has important implications for the processing
of interstellar material and its incorporation into planetary bodies.

Subject headings: infrared: ISM — ISM: abundances — ISM: molecules

1. INTRODUCTION

HL Tau is a heavily embedded, low-mass, young stellar ob-
ject (YSO) located in the Taurus molecular cloud at a distance
of ∼140 pc (Elias 1978). Bright submillimeter emission sug-
gests the presence of a massive (∼0.1M,) disk of circumstellar
material surrounding the central star (Sargent 1989; Beckwith
et al. 1990). The bulk of the disk material is thought to reside
within a radius of less than 200 AU (Sargent & Beckwith 1991).

There have been very few studies of the chemistry of the
inner, planet-forming regions of disks around young stars. Most
submillimeter/millimeter studies do not have the spatial reso-
lution to investigate the inner regions of protostellar disks
where planet formation may occur. With the advent of instru-
ments capable of providing both high spatial and spectral res-
olution in the infrared, such as NIRSPEC at the W. M. Keck
Observatory, studies of such disks are now possible. Also, with
arrays such as the Atacama Large Millimeter Array and the
Submillimeter Array coming on line in the near future, now is
the ideal time to study the chemistry in disks around young
stars.

Methane is a symmetric tetrahedral hydrocarbon. It lacks a
permanent dipole moment and hence has no pure rotational
lines. For this reason, it cannot be observed at radio wave-
lengths. It also does not fluoresce efficiently at visible or UV
wavelengths. In order to determine CH4 column densities in
disks around young stars, we must rely on observations of
rovibrational transitions in the infrared. Methane has been stud-
ied in the solid and gas phase around massive YSOs via the

band (Boogert et al. 1997, 1998) as well as via the bandn n4 3

in the comae of Oort Cloud comets (Gibb et al. 2003). For this
study, we searched for the lines near 3.3mm.n3

We present high-resolution, near-infrared observations of the
3026–3050 cm�1 region toward HL Tau. We searched for but
did not detect methane absorption or emission lines towardn3

this source. We show that the upper limit for the total column
density of CH4 (gas�ice), compared to CO, is not inconsistent
with values determined along the lines of sight to massive

YSOs. However, our upper limit for the methane/CO column
density ratio is significantly lower than that predicted by the
model of Markwick et al. (2002), which predicts chemical
abundances of several key species in the inner 10 AU of the
protostellar disk surrounding a T Tauri star. It is also more than
order of magnitude less than that observed in Oort Cloud com-
ets, implying a mechanism to produce or selectively retain CH4

on icy dust mantles in the early protoplanetary disk.

2. OBSERVATIONS AND DATA REDUCTION

Observations were performed using the high-dispersion, cry-
ogenic echelle spectrometer NIRSPEC at the 10 m W. M. Keck
Observatory on Mauna Kea, Hawaii (McLean et al. 1998). The
data were acquired on 2002 March 23 with good seeing and
a low atmospheric water burden. We achieved 20 minutes on-
source. A spectral resolving power of∼25,000 was obtained
using the 3 pixel (0�.43) wide slit. Data processing included
using a series of flats and darks to remove systematic effects
from the grating setting. Systematically hot and dead pixels
and cosmic-ray hits were then removed, and the data were
resampled to align the spectral and spatial dimensions along
rows and columns, respectively (DiSanti et al. 2001; Brittain
et al. 2003).

Observations were taken in an observing sequence ABBA
where the telescope was nodded a small distance (15�.) along
the slit in the north-south direction. Combining the scans as

canceled the telluric emission to first order.{A � B � B � A}/2
Atmospheric models were obtained using the Spectral Synthe-
sis Program (SSP; Kunde & Maguire 1974) that accesses the
HITRAN 2000 molecular spectroscopic database (Rothman et
al. 2003). We used these SSP models to assign the wavelength
scales to the extracted spectra and to determine column burdens
for the absorbing species in the Earth’s atmosphere, primarily
water and methane in the spectral region covered in this study.
The atmospheric model is then binned to the resolution of the
spectrum, normalized, and scaled to the continuum level. We
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Fig. 1.—Spectrum of HL Tau. The dashed line is the atmospheric trans-
mittance model. The solid line at the top is the ratio between the spectrum
and the atmospheric transmittance model. The gaps are where the transmittance
is less than 50%. The expected Doppler-shifted positions of the CH4 R0, R1,
andR2 lines are indicated. Poorly fitted telluric ozone lines are indicated with
tick marks. There is no indication of CH4 absorption or emission present. The
strong emission feature near 3033 cm�1 is due to the Pfd line of hydrogen.

TABLE 1
Upper Limits for CH4

a

Line
nrest

(cm�1)

Atmospheric
Transmittance

(%)
Wn

(cm�1)
A

(s�1)
Nline

(cm�2) F(T)
Ntot

(cm�2)

R0 . . . . . . . 3028.75 85 !3.38(�3) 126.27 !1.9(14) 0.0435 !4.3(15)
R1 . . . . . . . 3038.50 85 !2.96(�3) 75.182 !2.7(14) 0.0673 !4.1(15)
R2b . . . . . . 3048.16 77 !3.31(�3) 127.46 !1.8(14) 0.138 !1.3(15)

a The 3j upper limits are reported.
b The R2 line is comprised of two unresolved components. The quantities reported are for the

sum of both components.

then divided the atmospheric model from the observation to
reveal the residual spectrum of HL Tau.

The resulting spectrum is plotted in Figure 1. The residual is
plotted at the top. The expected Doppler-shifted line positions
of the CH4 R0, R1, andR2 lines, determined from the COn3

absorption-line positions to be km s�1 (Brittain et al.48� 1
2004), are indicated on the plot. The strong, broad emission
feature near 3033 cm�1 is the Pfd line of hydrogen. Excess re-
sidual between 3043 and 3047 cm�1 (indicated by the short ticks
in Fig. 1) is a result of the atmospheric model not adequately
fitting the ozone absorption lines in this spectral region. We note
that the ozone lines in other parts of the spectrum do reproduce
the data very well (i.e., those from 3026 to 3040 cm�1) and
conclude that the few lines that are poorly fitted, which do not
correspond to the positions of expected methane lines, should
not affect the detectability of methane in this study.

3. RESULTS

3.1. Methane Gas

We determined the upper limits to equivalent widths of the
CH4 R0, R1, andR2 lines based on the signal-to-noise ratio of
our data, taking into account the atmospheric transmittance at
each line position. For the purpose of this work, we assume
that the CH4 gas will be absorbing in the same region of the
disk as the CO gas. We assume an unresolved Gaussian line
shape and a rotational temperature of 100 K, consistent with

the CO absorption lines (Brittain et al. 2004). The equivalent
width for a Gaussian is by definition

DI
�1˜W p 1.0645 Dn cm , (1)n I0

where is the depth of the line as a fraction of the fittedDI/I0

continuum level and is its full width at half-peak, expressed˜Dn
in units of cm�1. From this, an upper limit for the column
density for each line is determined using

2m c W˜e nN p , (2)( )2pe f

where the oscillator strength andA is the2 2 2˜f p cm A/8p e ne

EinsteinA-value. The 3j upper limits for each line are reported
in Table 1.

The total column density for CH4 absorption was then cal-
culated by assuming a Boltzmann distribution at a temperature
of 100 K. From this, the fractional population for each transition
is given by

(�1.439E /T )lF(T ) p (2J � 1)g e /Q(T ), (3)A, E, F

whereQ is the partition function at temperatureT (assumed to
be 100 K) and is the lower state energy (in units of cm�1).El

CH4 has three noncombining spin species labeledA, E, andF,
each with a statistical weight that is the product of ( )2J � 1
and 5, 2, and 3, respectively. The rotational partition function
is given for each spin species by Fox (1970). In addition, many
CH4 lines are superpositions of unresolved multiple transitions.
This is unimportant forR0 andR1, which are pureA and F
transitions, respectively.R2, however, is comprised of anE and
an F transition, unresolved by NIRSPEC. For this line, we
summed over the two contributing lines. The total column den-
sity upper limits are reported in Table 1.

Using this methodology, we determined a 3j upper limit
for the total column density of CH4 gas absorption of 1.3#

cm�2 toward HL Tau from the strongest (R2) line. TheR01510
and R1 lines are somewhat less constraining, givingN !tot

cm�2. Gas-phase CO absorption has also been ob-154.2# 10
served toward this source (Brittain et al. 2004). Figure 2 shows
two sample CO spectra. Both broad emission lines (from hot
CO very close to the star) and narrow absorption lines (for
both 12CO and13CO) are visible and result from colder gas
along the line of sight. We compare our methane results to
those for CO. CO and CH4 are both expected to be primarily
in the gas phase at the temperatures of interest (although, as
noted below, it is possible that some methane could be trapped
in icy grain mantles), so it is reasonable to assume that they
coexist in the same region of the disk. The column density of
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Fig. 2.—CO absorption and emission spectrum of HL Tau from Brittain et
al. (2004). The broad emission features (labeled above the spectra) result from
hot (∼1500 K) CO gas near the star. The narrow absorption features of both
12CO and13CO (labeled below the spectra) are superposed on these emission
features. They have a lowerTrot (∼100 K), indicating colder gas along the line
of sight. Also shown are the broad hydrogen Pfb and Hue emission lines.

Fig. 3.—Plot showing gas�ice CH4/CO ratios for various physical envi-
ronments in the ISM, comets, and the Markwick et al. (2002) chemical model.
This shows that the upper limit for HL Tau is not inconsistent with the range
of interstellar values obtained by observations toward massive YSOs. However,
our upper limit is much lower than that for comets or the Markwick et al.
(2002) model.

CO absorption was found to be cm�2 with18(7.1� 0.3)# 10
a rotational temperature of∼100 K. When we compare this to
our 3j upper limit for CH4 gas absorption toward this source,
an upper limit of gaseous is deter-N(CH )/N(CO) ! 0.02%4

mined.
This result is substantially lower than the few measured in-

terstellar CH4/CO ratios (Boogert et al. 1997, 1998) shown in
Figure 3. These objects, for which methane has been studied
in absorption in both the gas and solid phase, are massive,
embedded YSOs. The CH4/CO ratios were calculated from the
combined solid-phase�gas-phase column densities along the
lines of sight. Although volatile species do vary, sometimes
dramatically, from one line of sight to another, the CH4/CO
ratio is fairly consistent among the few sources studied to date.
We therefore consider it reasonable to expect that the initial
CH4/CO ratio in the infalling material (ice and gas) to be on
the order of 1%. While our upper limit on gas-phase CH4/CO
is significantly less than the values toward YSOs, we point out
that those studies include ice column densities as well.

We also searched for CH4 emission, using the methodology
outlined in Brittain et al. (2004) to determine column density
upper limits. We assumed that any emission would result from
1500 K gas close to the star, as found for CO. Our 3j upper
limit for the effective hot CH4 gas abundance (relative to CO)
is less than 4.5%. As this is not nearly as well constrained as
the absorption, we do not discuss it further but point out that
future studies should also search for evidence of CH4 emission.

3.2. Methane Ice

H2O ice has been observed toward HL Tau (van de Bult et
al. 1985). Its profile shows evidence of partial annealing. When
compared to laboratory spectra, it is found to be consistent with
ice that has been heated to∼80–100 K. In the interstellar medium
(ISM), CH4 is thought to form via H-atom addition reactions to
C, analogous to the formation method for H2O (Boogert et al.
1998). CH4 is thought to form alongside H2O and is then trapped
in the ice where its sublimation is suppressed (Hiraoka et al.
1998). Studies of CH4 toward massive YSOs are consistent with
this interpretation since gas-phase CH4 absorption in the sources
in which it has been detected are all consistent with warm (∼70–
100 K) gas. If CH4 were not trapped, it would evaporate at a

much lower temperature, and line ratios consistent withTrot as
low as∼30 K would be expected. Hence, it is possible that some
CH4 toward this source may yet be trapped in the icy dust grain
mantle. The H2O-ice column density toward HL Tau is∼1.4#
1018 cm�2 (Tegler et al. 1995). If we assume that the abundance
of CH4 ice is up to∼2% relative to water (consistent with the
values/upper limits determined for other YSOs), then there could
be at most cm�2 CH4 in the ice. CO ice has not been162.8# 10
detected toward HL Tau, and Tegler et al. (1995) derive an upper
limit of cm�2. This would bring our maximum possible161 # 10
(ice�gas) CH4/CO ratio to∼0.4%, which is somewhat lower
than but still consistent with observations of massive YSOs.

4. MODEL DISCUSSION

Using our derived rotational temperature of∼100 K for the
CO absorption lines (Brittain et al. 2004), the inferred tem-
perature for the water ice absorption (∼80–100 K), and com-
paring to disk models, we can estimate the region of the disk
from which most of the absorption occurs. Chiang et al. (2001)
used spectral energy distributions to model temperature profiles
in disks surrounding T Tauri stars. According to their Fig-
ure 5, 100 K material corresponds to distances of∼1–10 AU
from the parent star (depending on the vertical height in the
disk). This is the same region modeled by Markwick et al.
(2002), who investigated the chemistry in the inner (1–10 AU)
region of the protoplanetary disk around a T Tauri star (cor-
responding to midplane temperatures of∼60–700 K). For this
reason, we compare our results to this model.

Markwick et al. (2002) based their chemical model on that
by Willacy et al. (1998) and investigated cases including and
excluding X-ray ionization. They took into account a vertical
temperature profile and the effect of adsorption of several key
species, including CH4, onto an icy grain mantle. They deter-
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mined column densities for many species, including CH4 and
CO, at 1, 5, and 10 AU. In all cases, the CH4 and CO column
densities were comparable, resulting in (shownCH /CO∼ 14

as a plus sign in Fig. 3). This is more than 2 orders of magnitude
greater than our estimated upper limit for the total gas�ice
CH4/CO column density ratio toward HL Tau.

This discrepancy may be due in part to model assumptions.
The chemical model of Willacy et al. (1998) assumed that
elements were initially atomic at 100 AU. They also ran a dark
cloud model to determine the initial composition and found the
results for both models to be similar for most species, including
CH4. However, the initial abundance of CH4 was likely over-
estimated in these models since, as pointed out by Willacy &
Langer (2000), starting with atomic C and a high H/H2 ratio
results in an efficient production of CH4 that disagrees with
observational constraints. They suggested modifications that
reduce production of CH4 by a factor of 10. It is not clear
whether or not this reduced input will entirely compensate for
the factor of greater than 100 difference between the results of
Markwick et al. (2002) and our upper limit for HL Tau. We
suggest that additional modeling of the inner regions of pro-
tostellar disks is needed as well as additional searches for CH4

in disks around other young stars to see whether our result is
general or specific to HL Tau. In particular, it would be valuable
to search for methane gas toward sources that have lost most
of their icy grain mantle material, ensuring that any methane
would reside in the gas.

As an interesting comparison, Figure 3 also shows the range
of CH4/CO values for eight Oort Cloud comets from Gibb et
al. (2003). Oort Cloud comets are thought to have formed in
the giant planet region (5–40 AU) of the protoplanetary disk
before being gravitationally scattered into the Oort Cloud. CH4

and CO both vary by over an order of magnitude in the comet
population (when compared to water), but CH4/CO (0.1–0.8)
is much higher than that toward HL Tau or massive YSOs.
Clearly there was some mechanism for either producing meth-
ane in the solar disk or selectively maintaining it on icy dust
mantles during the comet formation process, assuming that the
solar nebula was similar in composition to star-forming regions
today. For example, if CH4 was trapped in a polar (water-
dominated) ice matrix and if the grains were never heated
enough to evaporate the polar mantle, then methane could have

been retained. However, CO ice exists predominantly in the
more volatile apolar mantle, which requires much lower tem-
peratures (∼30 K) to evaporate. Hence, there is a range of
temperatures (∼30–90 K) at which CO would evaporate but at
which methane could be retained on the icy grain mantles. This
is one possible mechanism that could explain an enhancement
of the CH4/CO ratio in comets.

5. CONCLUSION

We derive a very low (!0.02%) 3j upper limit for the
CH4/CO gas ratio in the disk surrounding the T Tauri star
HL Tau. If we assume that methane ice could be trapped in
the icy mantles of dust grains, then our upper limit of 0.4%
is somewhat lower than but not inconsistent with the total
(ice�gas) CH4/CO determined toward other star-forming
regions (Boogert et al. 1997, 1998). This low abundance
suggests that gas-phase reactions have not significantly en-
hanced the methane column density toward this T Tauri
object.

It is important to ascertain whether or not this is also the
case for disks around other T Tauri stars. This result shows the
need for improved models of the disk chemistry in the inner
regions surrounding T Tauri stars and for further observations
to search for minor volatile constituents in these poorly studied
regions. It also shows the necessity of studying both disks
around young stars and comets, the most pristine solar system
bodies, to understand chemical evolution through the planet
formation process. It is hoped that by increasing the sample of
well-studied comets and disks around young stars, we can
bridge the gap in chemical evolution from infall through planet
formation.

This work was supported by NSF grant AST 02-05881. We
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Technology, the University of California, and the National Aer-
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