1,057 research outputs found

    Controlling antiferromagnetic domains in patterned La0.7Sr0.3FeO3 thin films

    Get PDF
    Transition metal oxide thin films and heterostructures are promising platforms to achieve full control of the antiferromagnetic (AFM) domain structure in patterned features as needed for AFM spintronic devices. In this work, soft x-ray photoemission electron microscopy was utilized to image AFM domains in micromagnets patterned into La0.7Sr0.3FeO3 (LSFO) thin films and La0.7Sr0.3MnO3 (LSMO)/LSFO superlattices. A delicate balance exists between magnetocrystalline anisotropy, shape anisotropy, and exchange interactions such that the AFM domain structure can be controlled using parameters such as LSFO and LSMO layer thickness, micromagnet shape, and temperature. In LSFO thin films, shape anisotropy gains importance only in micromagnets where at least one extended edge is aligned parallel to an AFM easy axis. In contrast, in the limit of ultrathin LSFO layers in the LSMO/LSFO superlattice, shape anisotropy effects dominate such that the AFM spin axes at micromagnet edges can be aligned along any in-plane crystallographic direction

    Modes of Multiple Star Formation

    Get PDF
    This paper argues that star forming environments should be classified into finer divisions than the traditional isolated and clustered modes. Using the observed set of galactic open clusters and theoretical considerations regarding cluster formation, we estimate the fraction of star formation that takes place within clusters. We find that less than 10% of the stellar population originates from star forming regions destined to become open clusters, confirming earlier estimates. The smallest clusters included in the observational surveys (having at least N=100 members) roughly coincide with the smallest stellar systems that are expected to evolve as clusters in a dynamical sense. We show that stellar systems with too few members N < N_\star have dynamical relaxation times that are shorter than their formation times (1-2 Myr), where the critical number of stars N_\star \approx 100. Our results suggest that star formation can be characterized by (at least) three principal modes: I. isolated singles and binaries, II. groups (N<N_\star), and III. clusters (N>N_\star). Many -- if not most -- stars form through the intermediate mode in stellar groups with 10<N<100. Such groups evolve and disperse much more rapidly than open clusters; groups also have a low probability of containing massive stars and are unaffected by supernovae and intense ultraviolet radiation fields. Because of their short lifetimes and small stellar membership, groups have relatively little effect on the star formation process (on average) compared to larger open clusters.Comment: accepted to The Astrophysical Journa

    The formation of permanent soft binaries in dispersing clusters

    Full text link
    Wide, fragile binary stellar systems are found in the galactic field, and have recently been noted in the outskirts of expanding star clusters in numerical simulations. Energetically soft, with semi-major axes exceeding the initial size of their birth cluster, it is puzzling how these binaries are created and preserved. We provide an interpretation of the formation of these binaries that explains the total number formed and their distribution of energies. A population of weakly bound binaries can always be found in the cluster, in accordance with statistical detailed balance, limited at the soft end only by the current size of the cluster and whatever observational criteria are imposed. At any given time, the observed soft binary distribution is predominantly a snapshot of a transient population. However, there is a constantly growing population of long-lived soft binaries that are removed from the detailed balance cycle due to the changing density and velocity dispersion of an expanding cluster. The total number of wide binaries that form, and their energy distribution, are insensitive to the cluster population; the number is approximately one per cluster. This suggests that a population composed of many dissolved small-N clusters will more efficiently populate the field with wide binaries than that composed of dissolved large-N clusters. Locally such binaries are present at approximately the 2% level; thus the production rate is consistent with the field being populated by clusters with a median of a few hundred stars rather than a few thousand.Comment: 10 pages, accepted to MNRA

    The Evolution of Wide Binary Stars

    Full text link
    We study the orbital evolution of wide binary stars in the solar neighborhood due to gravitational perturbations from passing stars. We include the effects of the Galactic tidal field and continue to follow the stars after they become unbound. For a wide variety of initial semi-major axes and formation times, we find that the number density (stars per unit logarithmic interval in projected separation) exhibits a minimum at a few times the Jacobi radius r_J, which equals 1.7 pc for a binary of solar-mass stars. The density peak interior to this minimum arises from the primordial distribution of bound binaries, and the exterior density, which peaks at \sim 100--300 pc separation, arises from formerly bound binaries that are slowly drifting apart. The exterior peak gives rise to a significant long-range correlation in the positions and velocities of disk stars that should be detectable in large astrometric surveys such as GAIA that can measure accurate three-dimensional distances and velocities.Comment: 36 pages, 9 figures, accepted by MNRAS, typos correcte

    Microstencils to generate defined, multi-species patterns of bacteria

    Get PDF
    Citation: Timm, C. M., Hansen, R. R., Doktycz, M. J., Retterer, S. T., & Pelletier, D. A. (2015). Microstencils to generate defined, multi-species patterns of bacteria. Biomicrofluidics, 9(6). doi:10.1063/1.4935938Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another. The method combines parylene-based liftoff techniques with microfluidic delivery to simultaneously pattern multiple bacterial species with high viability using low-cost, customizable methods. Quantitative measurements of bacterial growth for two competing isolates demonstrate that spatial coordination can play a critical role in multispecies growth and structure. © 2015 AIP Publishing LLC

    Controlling condensation and frost growth with chemical micropatterns

    Get PDF
    Citation: Boreyko, J. B., Hansen, R. R., Murphy, K. R., Nath, S., Retterer, S. T., & Collier, C. P. (2016). Controlling condensation and frost growth with chemical micropatterns. Scientific Reports, 6, 15. doi:10.1038/srep19131In-plane frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from neighboring supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of ice bridges across the population of supercooled condensate. Here, we demonstrate that when the separation between adjacent nucleation sites for supercooled condensate is properly controlled with chemical micropatterns prior to freezing, inter-droplet ice bridging can be slowed and even halted entirely. Since the edge-to-edge separation between adjacent supercooled droplets decreases with growth time, deliberately triggering an early freezing event to minimize the size of nascent condensation was also necessary. These findings reveal that inter-droplet frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and by temporally controlling the onset of freezing events

    Observations and Simulations of Formation of Broad Plasma Depletions Through Merging Process

    Get PDF
    Broad plasma depletions in the equatorial ionosphere near dawn are region in which the plasma density is reduced by 1-3 orders of magnitude over thousands of kilometers in longitude. This phenomenon is observed repeatedly by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite during deep solar minimum. The plasma flow inside the depletion region can be strongly upward. The possible causal mechanism for the formation of broad plasma depletions is that the broad depletions result from merging of multiple equatorial plasma bubbles. The purpose of this study is to demonstrate the feasibility of the merging mechanism with new observations and simulations. We present C/NOFS observations for two cases. A series of plasma bubbles is first detected by C/NOFS over a longitudinal range of 3300-3800 km around midnight. Each of the individual bubbles has a typical width of approx 100 km in longitude, and the upward ion drift velocity inside the bubbles is 200-400 m/s. The plasma bubbles rotate with the Earth to the dawn sector and become broad plasma depletions. The observations clearly show the evolution from multiple plasma bubbles to broad depletions. Large upward plasma flow occurs inside the depletion region over 3800 km in longitude and exists for approx 5 h. We also present the numerical simulations of bubble merging with the physics-based low-latitude ionospheric model. It is found that two separate plasma bubbles join together and form a single, wider bubble. The simulations show that the merging process of plasma bubbles can indeed occur in incompressible ionospheric plasma. The simulation results support the merging mechanism for the formation of broad plasma depletions

    Open Source Supply Chain Security: a Cost-Benefit Analysis of Achieving Various Security Thresholds in Build Environments

    Get PDF
    Open source software has become a cornerstone of modern software development, offering unparalleled opportunities for innovation and collaboration. However, its widespread adoption has also introduced a host of security vulnerabilities, particularly in the software supply chain. This paper provides a comprehensive cost-benefit analysis of achieving various security thresholds to harden the build environment, focusing on isolated, hermetic, reproducible, and bootstrappable builds. For each build type, we provide a clear definition and outline the steps required for implementation. We then evaluate the associated costs and benefits of each build, emphasizing their roles in strengthening the build environment and enhancing supply chain security. The paper concludes with recommendations for stakeholders, including startups, large corporations, and government agencies, and proposes future research directions to enhance build environment security

    Stochastic Assembly of Bacteria in Microwell Arrays Reveals the Importance of Confinement in Community Development

    Get PDF
    Citation: Hansen, R. H., Timm, A. C., Timm, C. M., Bible, A. N., Morrell-Falvey, J. L., Pelletier, D. A., . . . Retterer, S. T. (2016). Stochastic Assembly of Bacteria in Microwell Arrays Reveals the Importance of Confinement in Community Development. Plos One, 11(5), 18. doi:10.1371/journal.pone.0155080The structure and function of microbial communities is deeply influenced by the physical and chemical architecture of the local microenvironment and the abundance of its community members. The complexity of this natural parameter space has made characterization of the key drivers of community development difficult. In order to facilitate these characterizations, we have developed a microwell platform designed to screen microbial growth and interactions across a wide variety of physical and initial conditions. Assembly of microbial communities into microwells was achieved using a novel biofabrication method that exploits well feature sizes for control of innoculum levels. Wells with incrementally smaller size features created populations with increasingly larger variations in inoculum levels. This allowed for reproducible growth measurement in large (20 mu m diameter) wells, and screening for favorable growth conditions in small (5, 10 mu m diameter) wells. We demonstrate the utility of this approach for screening and discovery using 5 mu m wells to assemble P. aeruginosa colonies across a broad distribution of innoculum levels, and identify those conditions that promote the highest probability of survivial and growth under spatial confinement. Multi-member community assembly was also characterized to demonstrate the broad potential of this platform for studying the role of member abundance on microbial competition, mutualism and community succession
    corecore