
PSFC/JA-97-19

IONOSPHERIC ION ACCELERATION

BY MULTIPLE ELECTROSTATIC WAVES

A. K. Ram, A. Bers, and D. Benisti

September 1997

Plasma Science and Fusion Center
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 USA

This work was supported by NSF Grant No. ATM-94-24282. Repro-
duction, translation, publication, use and disposal, in whole or part,
by or for the United States Government is permitted.

Presented at the Fourth IPELS Conference, June 1997, Maui, Hawaii.

Submitted to Journal of Geophysical Research.

1



IONOSPHERIC ION ACCELERATION

BY MULTIPLE ELECTROSTATIC WAVES

A. K. Ram, A. Bers, and D. Benisti

TABLE OF CONTENTS

Abstract ... ........... ................................... 1

1. Introduction . ........... ................................ 1

2. Observations . ........... ................................ 3

3. Modelling the Motion of Ions . . . . . . . . . . . . . . . . . . . . . . . . 4

4. Interaction with a Single Electrostatic Wave . . . . . . . . . . . . . . . . . . 6

5. Interaction with Two Electrostatic Waves . . . . . . . . . . . . . . . . . . . 8

6. Analytical Study of Dynamics in Two Waves . . . . . . . . . .. . . . . . . . . 10

7. Coherent Energization in a Broadband Spectrum . . . . . . . . . . . . . . . . 13

8. Application to 0+ Energization . . . . . . . . . . . . . . . . . . . . . . . 13

9. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ii



Ionospheric Ion Acceleration by Multiple Electrostatic Waves

A.K. Ram, A. Bers, and D. Benisti

Plasma Science and Fusion Center and Research Laboratory of Electronics

Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract. Observations by Topaz 3 show ionsopheric 0+ and H+ ions, of ambient energies

around 0.3 eV, to be transversely (to the geomagnetic field) energized, to around 10 eV,

within lower-hybrid structures composed of broadband large amplitude (100-200 mV/m)

electrostatic waves. In this paper we shbw that the energization of 0+ ions can be explained

by a new nonlinear, coherent interaction mechanism involving multiple electrostatic waves

propagating across the magnetic field. Low energy ions, whose velocities are well below

the phase velocities of the waves, are shown to gain energy monotonically increasing in

time when averaged over a cyclotron orbit, We examine the properties of this coherent

energization mechanism numerically and by an analytical, multiple time scale, analysis.

We find, in accordance with observations, that the tail of the 0+ distribution is most likely

to be energized. The analysis provides the spatial extent, along the geomagnetic field, of

the lower-hybrid structures needed for the observed energization.

1. Introduction

The presence of terrestrial ionospheric H+ and 0+ ions in the magnetosphere has been

well documented by observations over nearly the past twenty years. The ambient energies

of the ions, through their collisional coupling with the neutrals, is approximately 1/3 eV

at an altitude of about 1000 km in the upper auroral ionosphere. The gravitational escape

energies from this altitude are about 0.6 eV and 10 eV for H+ and 0+ , respectively.

One of the outstanding problems of space plasma physics is the process of energization

whereby the H+ and 0+ ions are able to gravitationally escape the ionosphere. Rocket

observations over the past few years have begun to provide some of the essential features

1 Present address: Consorzio RFX, Corso Stati Uniti, 4, 35127 Padova, Italy
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of the energization process. Observations by Topaz 3 show that electrostatic, lower-hybrid

waves propagating across the geomagnetic field may be one of the energization mechanisms

[Kintner et al., 1992; Vago et al., 1992]. The acceleration of the ions is due to wave-particle

interactions with the H+ and 0+ ions interacting with the electrostatic fields [Kintner et

al., 1992; Vago et al., 1992]. The fields are not generated by the ions - the source of free-

energy generating the waves maybe the precipitating energetic electrons [Kintner et al.,

1992; Vago et al., 1992]. Motivated by these observations, we have studied the interactions

of ions with a prescribed spectrum of coherent, electrostatic waves propagating across the

geomagnetic field. We have not concerned ourselves with the mechanisms responsible for

generating the electrostatic fields. Rather, we have assumed that the characeristics of the

field spectrum are fixed within the bounds of observations, and the ions interact with this

prescribed spectrum of fields. An important characteristic of the measured wave fields is

that their lowest phase velocity is greater than the ambient thermal velocity of H+ ions,

and much greater than the ambient thermal velocity of 0+ ions.

The studies we report in this paper are in contrast to some of the previous anal-

yses on ion acceleration by lower-hybrid fields [Papadopoulos et al., 1980; Lysak, 1986].

Some of these prior analyses have assumed that the ions interact with a single, coherent,

electrostatic wave. While this may be suitable for a frequency spectrum that has a very

narrow band (less than the ion-cyclotron frequency), the observed broadband spectra do

not satisfy this requirement. Furthermore, as we will show, the single wave analysis falls

short of explaining the observed energies that are achieved by H+ and 0+ . In the single

wave analysis, ions whose perpendicular (to the geomagnetic field) velocities are close to

the phase velocities of the waves interact strongly with the waves. For 0+ ions the sin-

gle wave analysis fails because the observed wave phase velocities are not resonant with

any significant fraction of the ion. For H+ ions the analysis fails because the observed

wave phase velocities do not extend out to velocities at which the energized H+ ions axe

observed. A quasilinear description of the wave-particle interaction applies to broadband

spectra [Kennel and Engelmann, 1966]. However, in the quasilinear analysis only those

ions are affected whose velocities are resonant with the phase velocities of the waves in
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the broadband spectrum [Kennel and Engelmann, 1966]. Thus, a quasilinear analysis also

fails to describe the observed acceleration of ionospheric ions since it also requires the

presence of waves that are resonant with the low energy ions. In this paper we show that

it is possible to energize 0+ ions provided that the field spectrum consists of two or more

waves with frequencies separated by an integer multiple of the ion-cyclotron frequency. In

such a case, we show that there exists a nonlinear, coherent energization mechanism by

which low energy 0+ ions are accelerated to observed energies. The phase velocities of

the waves in the spectrum can, in accordance with observations, be much greater than the

0+ thermal velocity. We do not have to resort, as in previous theories, to searching for

mechanisms that generate low phase-velocity waves of substantial electric field amplitude

which can then interact with the ambient 0+ distribution function [Retterer et al., 1986].

The phenomenon of nonlinear, coherent energization does not exist for ion dynamics in a

single wave [Fukuyama et al., 1977; Karney and Bers, 1977; Karney, 1978; Papadopoulos

et al., 1980; Lysak, 1986], or in any quasilinear description of wave-particle interactions

[Retterer et al., 1986].

In this paper we outline the important observations from Topaz 3 in section 2 that

are relevant for our analysis. Section 3 contains the dynamical model of the ions, and

the results from an analysis in the case of a single wave are in section 4. Included is

the shortcoming of such an analysis when trying to explain the observations. In section

5 we give numerical results for the dynamics of ions in two electrostatic waves. The

analytical analyses describing these results is given in section 6. The energization of ions

in a broadband spectrum and the application to 0+ energization are in sections 7 and 8,

respectively.

2. Observations

The theoretical model analysis that we will be discussing is aimed at understanding

specific observations reported by Kintner et al. [1992] and by Vago et al. [1992]. The

observations, from Topaz 3 rocket which was launched northward from Poker Flat, Alaska

in 1991, show that, at altitudes near 1000 km, there is transverse (to the geomagnetic
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field) energization of auroral ionospheric ions in localized regions of intense lower hybrid

waves. The energization occurs in density depleted regions of about 50-100 m across the

geomagnetic field J (and ~ 100 km along B [Arnoldy et al., 1993]) within which exist

intense electric fields ranging in amplitude from 50 to 150 mV/m. Within these regions

the oxygen 0+ and hydrogen H+ ions are observed to be accelerated transversely with

characteristic energies in the range 6-10 eV. The ambient energies of the ions in this

part of the ionosphere is approximately 0.34 eV (corresponding to a plasma temperature

of 4000* K). -Observations show that, predominantly, the bulk of the H+ distribution

is energized, while for 0+ the tail distribution gets energized. Occasionally, the tail of

the H+ distribution displayed transverse energization. The H+ ions are the minority ion

species with the ambient density of 0+ being larger than the H+ density by about an

order of magnitude. The wave spectrum, observed to be cutoff near the local lower-hybrid

frequency, ranges in frequency from about 5 kHz to about 12 kHz. These lower-hybrid

waves are primarily coherent, electrostatic, propagating across the geomagnetic field, and

ranging in wavelengths from 2 m to 20 m. Very importantly, from a theoretical point of

view, the Topaz 3 observations showed that the lower-hybrid waves are inducing transverse

energization of ions; the ions are not responsible for the generation of these field structures

comprised of lower-hybrid waves. The generation and the physical mechanisms responsible

for these lower-hybrid structures is presently not very well understood.

3. Modelling the Motion of Ions

Within the context of the above observations, our aim is to understand the energiza-

tion of ionospheric ions inside the lower-hybrid field structures. Towards this end we will

assume, consistent with observations, that the lower-hybrid waves lead to the energization

of ions through wave-particle interactions. Since the ions are not responsible for the gener-

ation and presence of the structures with enhanced lower-hybrid electric field amplitudes,

we will study the dynamics of ions in prescribed electrostatic fields whose characteristic

properties are similar to those observed by Topaz 3.

The motion of an ion interacting with N plane electrostatic waves, propagating per-
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pendicularly (along 1) to an ambient, uniform, magnetic field B = Boi, is given by:

dx
- =v (1)

dt=

dv N QEdt2X+ sin (kix - wit) (2)

where x and v are the position and velocity, respectively, of an ion of charge Q and mass

M, E, is the electric field amplitude of the i-th plane wave with wavenumber ki and

angular frequency wi, and 1 = QBo/M is the ion-cyclotron frequency. The Hamiltonian

corresponding to equations (1) and (2) is:

H(x, v, t) = 2 (v2 += 2x2) cos (kx - wit) (3)

which can be expressed in terms of the normalized action-angle variables of the unperturbed

(Ei = 0 for all i) system:

N

H(,I, 7-) = I+ j cos {kV2Isin(V) - vi7-

N 00
= i+Z E Jn (kivx2I) cos (n) - vir) (4)

i=1i n=-oo

where we have replaced kg/k, by ki, I = [(kix) 2 +(kiv/f) 2 ]/2 = p2 /2 and 7 = tan-1 (xr/v)

are the normalized action and angle variables, respectively, p is the normalized Larmor ra-

dius of the ion, Ei = QEiki/(Mn 2 ), vi = wi/Q, and r = Qt. The action I is a measure of

the energy of an ion. In order to provide a feeling for the normalized quantities, consider

a singly charged 0+ ion with an initial ambient energy of 0.34 eV, in a magnetic field

BO = 0.36G, interacting with a single wave of amplitude 100 mV/m, frequency 5 kHz,

and wavelength 2 m, corresponding to the lowest measured phase velocity with substantial

electric field amplitude. Then I z 220.7, p a 21, f ; 40.7, and v Z 146.2 where we

have dropped the subscripts on E and v. For a H+ ion with an energy of 0.34 eV, the

corresponding values would be I ~ 13.8, p ; 5.3, e z 2.55, and v ;z 9.1.
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4. Interaction with a Single Electrostatic Wave

There have been a number of studies on the effect of a single wave on the dynamics of

an ion [Fukuyama et al., 1977; Karney and Bers, 1977; Karney, 1978]. These studies have

been applied to understanding wave-particle interactions in space plasmas [Papadopoulos

et al., 1980; Lysak, 1986]. The need to study the dynamics of 0+ and H+ ions in more

than one electrostatic wave is clearly demonstrated by the results obtained from these

previous studies. In general, it has been found that an ion gains energy from a single wave

only if its motion becomes chaotic [Karney and Bers, 1977; Karney, 1978]. Otherwise, on

the average, an ion will not gain any .energy. The ion motion becomes chaotic if the wave

amplitude is above a threshold value [Karney and Bers, 1977; Karney, 1978]:

E > EtA 1 2/3 (5)

and if the initial values of the normalized Larmor radius po of the ion is within the following

bounds [Karney and Bers, 1977; Karney, 1978):

- VF <$ PO < ( 1/3 (4,,)2/3 (6)

The left-hand side of the above inequality gives the lower bound, in p, of the chaotic phase

space, and the right-hand side gives the upper bound. For an ion to get energized by its

interaction with a single wave, its po has to be within the bounds given by (6). Otherwise,

the ion will not gain any energy and its motion will remain coherent.

If we consider a wave with frequency 5 kHz and wavelength 2 m in a magnetic field

of 0.36 G, then the threshold amplitude for chaotic motion is:

Eth 6.94 = E. e 17.0 mV/m

6 ~ 1.1 ==> 42.9 mV/m (7)

for 0+ and H+ , respectively. Since the electric field amplitudes in the structures observed

by Topaz 3 are well above these threshold values, part of the phase space of 0+ and H+
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will be chaotic. The chaotic region of phase space, obtained from (6) for an electric field

amplitude of 100 mV/m, for 0+ and H+ , respectively, is:

139.8 < po < 712.2 15.3 eV < I0 < 396.1 eV
(8)

7.5 < p H < 17.7 0.7 eV < IO < 3.9 eV

where the units of 10 have been reexpressed in terms of energy. In Figure 1, we plot

this chaotic part of phase space, in energy units, for 0+ and H+ and show the range of

energies for these ions as observed by Topaz 3. The problems associated with explaining

the observed energy ranges of 0+ and H+ using a single wave model are now readily

apparent. The lower bound of the 0+ chaotic phase space is at about fifty times the

ambient thermal energy of 0+ and, hence, encompasses a negligible number of 0+ ions.

Furthermore, the entire chaotic region for 0+ is well above the observed 0+ energies. The

maximum energy of the chaotic region is much larger than the observed energy range for

the energized 0+ ions. So even if it were possible to extend the lower part of the 0+

chaotic space into the 0+ thermal distribution function, the energies that 0+ ions could

achieve would be significantly larger than the observed energy range. For H+ ions the

problem is a bit different. The lower part of the H+ chaotic region is at about twice the

ambient thermal energy energy of H+ . So a significant population of H+ ions have access-

to the chaotic phase space. However, the maximum energy that these ions can achieve is

well below the observed energy range.

Figure 2 shows the surface-of-section obtained by solving, numerically, equations (1)

and (2) for two 0+ ions, in a single wave, starting with different initial normalized Larmor

radii (p = v'2I). The initial energy of ion 1 is below the chaotic region while that of the ion

2 is in the chaotic region. The orbit of the first ion is completely coherent, mapping out a

line in phase space, and gains no energy, while that of the second ion is chaotic and covers

an area in phase space indicating an average gain in energy. A distribution of initial 0+

ions started in the chaotic phase space will, eventually, uniformly cover the entire phase

space and, consequently, the final distribution of these ions will be flattened out in the

chaotic phase space. Figure 3 shows the normalized Larmor radius of the two ions as a
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function of time. It is evident that the motion of the first ion is completely coherent and

that it gains no energy. Meanwhile, the second ion exhibits chaotic motion spanning a

large range in energy.

5. Interaction with two Electrostatic Waves

Before embarking on an analysis of ion motion in a broad spectrum of electrostatic

waves, it is useful to determine if there are any new phenomena that can arise in the

presence of two waves. The normalized equation of motion of an ion interacting with two

waves is:

2  + x = E.i sin (x - vr1 ) + E2 sin (rx - v27) (9)

where n = k2/k1 and kix -+ x. Whereas the parameter space for the case of one wave is two

dimensional - depending on just the wave amplitude and the ratio of the wave frequency

to the ion-cyclotron frequency, the parameter space for two waves is five dimensional - the

two amplitudes, the ratios of the two wave frequencies to the ion-cyclotron frequency, and

the ratio of the two wavelengths. After an extensive numerical analysis spanning various

portions of this five-dimensional parameter space, it was found that the dynamics of ions

in two waves was not any different from that in one wave except for a special set of wave

frequencies. This special set corresponds to the two waves having frequencies separated

by an integer multiple of the ion-cyclotron frequency [Benisti et aL., 1996; Benisti et al.,

1997; Ram et al.,, 1996; Ram et al., 1996a] In cases when this frequency separation is not

satisfied, the phase space is divided into two distinct regions - coherent and chaotic - just

as in the case of one wave. However, the bounds of the chaotic region are modified, relative

to the bounds for a single wave, and depend on the phase velocities and amplitudes of the

two waves. When the frequencies of the two waves are separated by an integer multiple of

the ion-cyclotron frequency, the two regions of phase space - coherent and chaotic - can

be connected. In other words, an 0+ ion having its initial energy well below the chaotic

region can get energized into the chaotic region. This is illustrated in Figure 4, where we

plot the normalized Larmor radius versus time for an ion started below the chaotic region.
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In this case the wave frequencies are separated by one ion-cyclotron frequency. In the

initial stage the 0+ ion is seen to monotonically gain energy in a coherent fashion, i.e. it

does not exhibit chaotic motion. Eventually, this ion gets energized into the chaotic phase

where its motion becomes diffusive. The initial energization of the ion, which we refer to

as nonlinear coherent energization is a completely new phenomenon which is present in the

case of two, specially chosen, waves. In the presence of two waves, an ion can cross from

the low-energy coherent region of phase space into the higher-energy chaotic region - this

being impossible for one wave. The ion motion in the two regions of phase space - the low-

energy coherent region and the higher-energy chaotic region - are not only distinguishable

from the motion of the ion and the evolution of its energy, but also by the time scales. In

the coherent energization region, as is evident from Figure 4, the rate of increase of energy

is much smaller than in the chaotic region. This distinguishing characteristic will be useful

in our later discussions on explaining the observations of Topaz 3.

The coherent energization is a nonlinear phenomenon. If we were to set k, = k 2 = 0,

then the motion is completely integrable and the ions do not gain any significant energy.

The coherent energization persists even if the frequencies of the two waves are reduced,

provided the difference in frequencies is an integer multiple of the ion cyclotron frequency.

In order to illustrate some of the features of coherent energization, we will show numer-

ical results for the case of lower frequency waves. Lowering the frequencies reduces the

computation time but does not change the basic properties of the ion dynamics. Figure 5

shows the normalized Larmor radius as a function of time for the case when vi = 24.43

and v2 = 25.43. At early times, the ion gets coherently enerigized until in reaches the

chaotic region of phase space. The upper and lower bounds of the choatic region can be

readily identified from this figure. This figure also illustrates that the ion can leave the

chaotic region and come back out into the coherent region where it will, for some time,

lose energy coherently. After reaching a minimum in energy, the ion gets coherently ener-

gized back into the chaotic region. The times at which the ion exits the chaotic region are

randomly distributed. The coherent and chaotic energization regions contine to be clearly

identifiable at all times by the time scale associated with the change in energy.
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The nonlinearity of the energization process is demonstrated in Figure 6 which shows

the dynamics of two different ions. The two ions are initially started with the same energy.

However, the initial phases of the two ions are different with the first ion having i6o = 0.067r

and the second ion having O0 = 0.267r. The second ion does not make it into the chaotic

phase space; its energy is bounded from above by the lower boundary of the chaotic region.

However, on the average, the second ion does gain significant energy - its average energy

being about half the lower energy bound of the chaotic region.

The dependence of the coherent energization on the wavelengths of the two waves is

illustrated in Figures 7 and 8. In these figures we show the dynamics of three ions, with

different initial phases but the same initial actions, for K = 0.98 (Figure 7) and K = 1.04

(Figure 8). In Figure 7 the ions are energized over a small range of energies with no ion

making it into the chaotic phase space. Unlike in the case of Figure 6, in Figure 8 the

ions are coherently energized till they all make it into the chaotic phase space. From these

results we conclude that more effective energization is obtained when the higher frequency

wave has the shorter wavelength, as is the case for lower-hybrid waves.

6. Analytical Study of Dynamics in two Waves

Since the nonlinear energization of low energy ions is a coherent process, we expect that

it can be analytically explained by an appropriate model. Towards that end, we carry out

a perturbation analysis of equation (9) using the method of multiple time scales [Nayfeh,

1973]. A more comprehensive and general analytical treatment using the Lie transform

perturbation technique has also been developed and will be presented elsewheres [Benisti

et al., 1997]. The perturbation parameter, in the method of multiple time scales, is the

normalized amplitude of the waves. In our analysis we assume that neither v, nor v2

is an integer, i.e. the wave frequencies are not an integer multiple of the ion-cyclotron

frequency. However, we will assume that the difference in the frequencies of the two waves

is an integer multiple of the ion-cyclotron frequency, i.e. v, - v 2 = N, an integer. (The

analysis can be easily generalized to the case when v, + v2 = N, and also for v, and v2

are integers [Benisti et al., 1997].) Our analysis breaks down in the vicinity of the chaotic
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regime. Upon carrying the multiple time scale analysis to second order in the amplitudes,

we find that an approximate solution of (9) is given by:

x(r) ~ p(r)sin{r+(r)} (10)

where p is the normalized Larmor radius, and V is the phase. The evolution equation for

p(r) and V;(r) are:

=p - 2Nsin(NO) E Jl(p)JI-N(p)(
Or 2p _ --=-1

O8 _ _ 10 _ E / (p)2+ J -N (r") _E2 0 JI(P)JI-N ( lp )
OT TpOp 1 -( -v 1)2  2p Op 1-( -v 1) 2

If C1 = E2 = E, then the above equations become independent of amplitude if we define a

new time variable T = O2 r. This implies that the change in the Larmor radius of an ion

is independent of the amplitude of the two waves. However, the rate at which the Larmor

radius changes is inversely proportional to the square of the amplitude.

Upon substituting I = p2/2, the above evolutions equations for the amplitude and

the phase can be derived from the Hamiltonian:

7 (I,T) = S, (I) + cos (N7) S2 (I) (12)

where S1 and S2 are the following sums:

0( EJ2 (p) + E2J2-N p
S1 (I) = 4 V124 1 - (1 - )

(13)
1 J1 (p) JI-N ((p)

S2 (I) = 2 E12 - _ V,)2
1=-co 10

The Hamiltonian (12) is independent of time signifying that it is a new constant, or

invariant, (to second order in the amplitude) of the dynamics. This constant is determined

by the initial conditions I(r = 0) and f(r = 0) of an ion. Note that at r = 0, i =

where 7P is the angle in (4).
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If we define S, ± 2 = !L, then

N_ I) 1 {Eiji (P) - 62JI-N P) 12

4 E 1 - (Il -V)2
1=-00

(r (14)

) {E1J (p) + E2 JI-N p)} 2

4 1 - (1 - V1)2

It is easy to note that, algebraically,

for S2 (I) > 0 : .(I) < H(I,) H+(I) (15a)

for S2 (I) < 0 : +(1) < I ).5 I (15b)

for S2 (I)= : (I,7f) = 0_ (I) = +(I) (15c)

Thus, the orbits of the ions are bound in energy to lie between two consecutive zeros

of S2 (I). The first zero of S2 occurs at I = 0 or, equivalently, at p = 0. However,

this perturbation analysis breaks down as the ions approach the chaotic region which is,

approximately, still given by the left-hand side of (6) with v = min(vi, v2).

This perturbation analysis gives results which are in good agreement with those ob-

tained from the exact numerical integration of the orbits. This is illustrated in Figures 9a

and 9b. For the parameters corresponding to Figure 6, the bounds of H obtained from

(14) are plotted in Figures 9a and 9b. Figure 9b is a magnified view of a smaller region

from Figure 9a. The orbit of any single ion is a straight horizontal line with the H given

by the initial value and bound to lie between H+ and H in accordance with (15b). In

Figure 6 we noted that ion 1 made it into the chaotic region while ion 2 did not. Figure

9b illustrates why this happens. The "inverse bump" in H_ near p ; 22 acts as a barrier

for low energy ions preventing them from making it into the chaotic region, which is near

p ~ 23. The local minimum, (H_...)min ~ -1.01 x 10-3, of R_ occurs at pm ; 21.75.

Ions with normalized Larmor radii p < pm and with I > (H_)min will not make it into

the chaotic region. In fact, for the wave amplitudes considered in Figure 6, no ions with

initial p < 4.7 will make it into the chaotic region, although they could undergo substantial

coherent energization. The initial conditions for ions 1 and 2 of Figure 6 are marked by
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a cross and a circle, respectively, in Figure 9b. It is now clear that ion 2 will not be able

to make it into the chaotic region. However, ion 2 will still undergo substantial coherent

energization, almost to near the chaotic region. This is in agreemnent with the results

shown in Figure 6.

7. Coherent Energization in a Broadband Spectrum

The results obtained from the study of ion dynamics in two waves are a useful guide for

determining some of the necessary conditions for which coherent energization can occur in

a broadband spectrum of waves. Figure 10 shows the dynamics of three ions, initially with

the same energy but different phases, in a spectrum composed of twelve waves. The waves

are composed of six pairs of waves whose frequencies are separated by the ion-cyclotron

frequency, while the frequency between any two pairs is randomly selected to be less than

the ion-cyclotron frequency. The wavenumbers of each wave is chosen such that the higher

frequency wave has a shorter wavelength. As the figure shows, all the ions are coherently

energized, from their initial low energies, into the chaotic phase space. This result provides

a necessary criterion for coherent energization - the spectrum has to be composed of pairs

of waves that are separated by an ion-cyclotron frequency; each pair could be randomly

distributed, in frequency, with respect to any other pair. Numerical simulations for a

variety of frequencies and frequency bandwidths confirm this necessary criterion.

8. Application to 0+ Energization

In order to estimate the time it would take 0+ ions to get energized, by nonlinear,

coherent energization, to 10 eV in a broadband spectrum of waves, of the sort observed by

Topaz 3, we consider the dynamics in a spectrum of 162 waves ranging in frequency from

146.2QO to 200QO (Qo is the 0+ cyclotron frequency), corresponding to a range from 5

kHz to 6.84 kHz. All the waves are assumed to have the same wavelength of 2 m, and

the same amplitude of 25 mV/m. The root mean square amplitude of the electrostatic

field is approximately 225 mV/m. The result for two 0+- ions started at different initial

energies is plotted in Figure 11. Ion 1 is initially at a transverse energy of approximately
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2.3 eV (corresponding to a transverse speed of about 2.6 times the thermal speed), and ion

2 is initially at a transverse energy of approximately 4.6 eV (corresponding to a transverse

speed of about 3.6 times the thermal speed). From this figure we find that the time needed

for ions 1 and 2 to be transversely energized to 10 eV (the dashed line in Figure 11) is

r4 ~ 122 sec and 7E ~ 65 sec, respectively. The simulation result shows that both the

0+ ions will make it into the chaotic region of phase space which exists at higher energies.

The time taken to reach the chaotic region is about 153 sec and 88 sec, respectively, for

the two ions. However, in order to reach the observed energies of 10 eV, the 0+ ions have

to be energized by the nonlinear, coherent mechanism discussed in section 4. It is worth

comparing the energization time rE with some other time scales that are relevant to this

problem. At an altitude of 1000 km, and assuming the geomagnetic field to be 0.36 G,

the gyrocenter of an 0+ ion, with a parallel energy of 1/3 eV and a perpendicular energy

of 10 eV, drifts transversely due to the gradient and curvature of the geomagnetic field

[Lyons and Williams, 1984) at a speed of about 9 x 10-3 m/sec. In the time it takes

the two ions to get energized to 10 eV, their gyrocenters have drifted by about 1.1 m

and 0.6 m, respectively. This is significantly less than the transverse width of the lower-

hybrid structures observed by Topaz 3. So the ions would not drift out of the interaction

region within the time it takes to get transversely energized to 10 eV. If we assume that

the speed, along the geomagnetic field, of the two ions is their thermal speed, then the

distance travelled along the geomagnetic field by the two ions, before they get transversely

energized to 10 eV, is approximately 173 km and 92 km, respectively. This implies that

the lower-hybrid structures have to extend up to about 173 km and 92 km, respectively,

along the geomagnetic field for the two ions to be transversely energized to 10 eV. These

distances are comparable to the estimated lengths of the lower-hybrid structures along the

geomagnetic field which are of the order of a few hundred kilometers [Arnoldy et al., 1993].

The fractional change in the strength of the geomagnetic dipolar field over a distance of

173 km is less than 0.01%. Thus, our approximation of a constant magnetic field is very

reasonable. These results indicate that the tail of the 0+ distribution function is likely

to get accelerated by the nonlinear, coherent energization mechanism for reasonable sizes
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of the lower-hybrid structures. Also, ions with initially small parallel velocities are more

likely to get accelerated than those with larger parallel velocities.

The results in Figure 11 also show that the 0+ ions can get energized beyond 10 eV

make it into the chaotic region where they can achieve much higher energies. However, the

corresponding time scales are long which, in turn, imply that the required parallel length

of the lower-hybrid structures has to be larger than the length required to get to 10 eV.

9. Conclusions

We have considered the dynamics of ions in an ambient magnetic field interacting

with two or more electrostatic waves propagating across the magnetic field. We showed

that low energy ions, whose initial velocities are well below the transverse phase velocities

of the waves, can get nonlinearly and coherently energized by two waves if the frequencies

of the waves are separated by an integer multiple of the ion-cyclotron frequency. These

low energy ions would not be affected if they were interacting with a single wave whose

phase velocity was larger than the transverse velocities of the ions. We showed that the

single wave analyses fall well short of explaining any results of transverse energization as

observed by TOPAZ 3. The nonlinear, coherent energization process exists also in a broad

spectrum composed of waves separated by an ion-cyclotron frequency. The dynamics of

ions in a spectrum of waves provides a time scale for the energization of 0+ ions. This time

scale then gives a measure of the size of the lower-hybrid structures along the geomagnetic

field needed to accelerate 0+ ions in the tail of the distribution function to the observed

energies.

We have also developed an analytical formulation, based on a multiple time scale

analysis, for the case of ions interacting with two waves, which provides an insight into the

nonlinear, coherent energization process. It shows that the energies to which ions can be

coherently energized depends only on the ratio of the amplitudes of the two waves. For

two waves of equal amplitudes, the energies attained by the ions is independent of the am-

plitudes of the waves. However, the time needed to get energized is inversely proportional

to the square of the amplitude. The analysis determines the range of energies to which
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an initial ion distribution function can be energized and the dependence of this range on

the wavelengths and frequencies of the waves. All these results are readily obtained from

our analytic (perturbation) theory, and were corroborated by detailed computations of ion

trajectories from the exact equations of motion. The latter are long, and costly, computa-

tions compared to the evaluation of our analytic results. The theoretical analysis is being

extended to include the dynamics in a broad spectrum of waves.

We have not addressed the energization of H+ ions in this paper. That is a subject

of a separate paper [Benisti et al., 1997] because the energization of H+ ions to higher

energies requires an extension of the chaotic H+ phase space. This is in contrast to the

nonlinear, coherent energization needed to energize 0+ ions. We have shown that a single

wave analysis shows that the bulk of the H+ distribution function can be energized due

to chaotic dynamics. However, the maximum energies that can be attained fall short of

the observed energies. In a spectrum of lower-hybrid waves we find that the upper energy

boundary of the region of chaotic H+ dynamics can be extended to higher energies [Benisti

et al., 1997].

The concept of nonlinear, coherent energization can be tested in a laboratory experi-

ment by considering the interaction of ions with two electrostatic waves propagating across

a d.c. magnetic field. Recent calculations [Benisti et al., 1997] show that the wave frequen-

cies have to be separated only approximately by an integer multiple of the ion-cyclotron

frequency. If the separation exceeds twice the ion-cyclotron frequency, the initial energy of

the ions has to increase for them to be energized. Low energy ions, whose initial velocities

are well below the phase velocities of the waves, should be energized to higher energies

if the higher frequency wave has the shorter or the longer wavelength. However, in the

former case the ions get energized to higher energies and can make it even into the chaotic

phase space.
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FIGURE CAPTIONS

Figure 1: The chaotic part of phase space of H+ and 0+ ions as obtained from a single

wave analysis. The single wave is assumed to have a wavelength of 2 m, frequency of 5

kHz, and an amplitude of 100 nV/m. Also shown is the observed range of ion energies.

Figure 2: Surface-of-section plot for two ions with initial normalized Larmor radii of

po = 66 and 148 interacting with a single wave. The other parameters are: e = 40.7

(corresponding to an electric field amplitude of 100 mV/m for a wavelength of 2 m) and

v = 146.2, corresponding to a frequency of 5 kHz.

Figure 3: The normalized Larmor radius as a function of normalized time for the same

two ions shown in Figure 2.

Figure 4: p versus r for an ion interacting with two waves having the following normalized

parameters: El = E2 = 40.7, K 1, v, = 146.2, and v2 = 147.2. Initially the ion is started

with po = 94 and bo = 0. The ion undergoes nonlinear, coherent energization into the

chaotic phase space.

Figure 5: p versus r for an ion interacting with two waves having the following normalized

parameters: El = E2= 3, n = 1, v, = 24.43, and v2 = 25.43. Initially the ion is started

with po = 5.4 and )0 = 0.061r.

Figure 6: p versus r for two ions interacting with two waves having the same parameters

as in Figure 5. Initially, for ion 1 p( 5.4 and V5 = 0.067r and for ion2 p(2 ) = 5.4 and

= 0.267r

Figure 7: p versus r for three ions interacting with two waves having the same parameters

as in Figure 5 except r = 0.98. Initially, po = 5.4 for all the ions. Their initial phases

are: V0 = 0, 7r/2, and 7r. The maximum value of p attained by the ions decreases with

increasing phase.

Figure 8: Same as Figure 7 except that n = 1.04. The ions with initial phases 0 = 7r/2

and V5o = 7r reach the chaotic phase space first and last, respectively.
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Figure 9a: H- and H+, obtained from (14), plotted as a function of p for two waves having

the same parameters as in Figure 6.

Figure 9b: A magnified view of Figure 9a. Here x and o mark the values of H obtained

from the initial conditions for ion 1 and ion 2, respectively, of Figure 6.

Figure 10: The dynamics of three ions interacting with twelve waves having vi = (24,

24.284, 24.43, 24.531, 24.784, 24.877, 25, 25.284, 25.43, 25.531, 25.784, 25.877) and ki =

(1, 1.012, 1.034, 1.041, 1.076, 1.083, 1.094, 1.1, 1.108, 1.115, 1.122, 1.138), respectively. All

waves have the same normalized amplitude ej = 0.576. Initially all the ions have po = 5.4

but with phases 0 = (0, 7r/2, 7r). The ions with initial phases 40 = 7r/2 and VO = ir

reach the chaotic phase space first and last, respectively.

Figure 11: The dynamics of two ions in 162 waves. All the waves have the same normal-

ized wavenumber ki = 1 and normalized amplitude ei = 10.7, for i = 1, 2,.....162. The

frequencies of these waves are V3n-2 = 146.2 + n, v3n-1 = 146.381 + n, v/3, = 146.873 + n,

for n = 1, 2 ....... , 54. The wavelength and the electric field amplitude of each wave are 2

m and 25 mV/m, respectively. Initially ion 1 has p,4) = 54, corresponding to an energy of

2.3 eV, and ion 2 has po = 76.5, corresponding to an energy of 4.6 eV. Both ions start

off with an initial phase V)o = 0.
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