1,505 research outputs found
Forced and self-excited oscillations of an optomechanical cavity
We experimentally study forced and self oscillations of an optomechanical
cavity which is formed between a fiber Bragg grating that serves as a static
mirror and between a freely suspended metallic mechanical resonator that serves
as a moving mirror. In the domain of small amplitude mechanical oscillations,
we find that the optomechanical coupling is manifested as changes in the
effective resonance frequency, damping rate and cubic nonlinearity of the
mechanical resonator. Moreover, self oscillations of the micromechanical mirror
are observed above a certain optical power threshold. A comparison between the
experimental results and a theoretical model that we have recently presented
yields a good agreement. The comparison also indicates that the dominant
optomechanical coupling mechanism is the heating of the metallic mirror due to
optical absorption.Comment: 11 pages, 6 figure
Decoherence induced by an ordered environment
This Letter deals with the time evolution of a qubit weakly coupled to a
reservoir which has a symmetry broken state with long range order at finite
temperatures. In particular, we model the ordered reservoir by a standard BCS
superconductor with s-wave pairing. We study the reduced density matrix of a
qubit using both the time-convolutionless and Nakajima-Zwanzig approximations.
We study different kinds of couplings between the qubit and the superconducting
bath. We find that ordering in the superconducting bath generically leads to an
unfavorable non- Markovian faster-than-exponential decay of the qubit
coherence. On the other hand, a coupling of the qubit to the non-ordered sector
of the bath can result in a Markovian decoherence of the qubit with a drastic
reduction of the decoherence rate. Since these behaviors are endemic to the
ordered phase, qubits can serve as useful probes of continuous phase
transitions in their environment. We also briefly discuss the validity of our
main result, faster than exponential decay of the qubit coherences, for a qubit
coupled to a generic ordered bath with a spontaneously broken continuous
symmetry at finite temperatures.Comment: 6 pages, 3 figure
Supersymmetric One-family Model without Higgsinos
The Higgs potential and the mass spectrum of the N=1 supersymmetric extension
of a recently proposed one-family model based on the local gauge group , which is a subgroup of the electroweak-strong
unification group , is analyzed. In this model the slepton multiplets play
the role of the Higgs scalars and no Higgsinos are needed, with the consequence
that the sneutrino, the selectron and six other sleptons play the role of the
Goldstone bosons. We show how the problem is successfully addressed in
the context of this model which also predicts the existence of a light CP-odd
scalar.Comment: REVTeX 4, 10 pages. Included discussions about constraints coming
from the rho-parameter and from Muon (g-2). References added. Version to
appear in Phys. Rev.
Effects Of Length, Complexity, And Grammatical Correctness On Stuttering In Spanish-Speaking Preschool Children
Purpose: To explore the effects of utterance length, syntactic complexity, and grammatical correctness on stuttering in the spontaneous speech of young, monolingual Spanish-speaking children. Method: Spontaneous speech samples of 11 monolingual Spanish-speaking children who stuttered, ages 35 to 70 months, were examined. Mean number of syllables, total number of clauses, utterance complexity (i.e., containing no clauses, simple clauses, or subordinate and/or conjoined clauses), and grammatical correctness (i.e., the presence or absence of morphological and syntactical errors) in stuttered and fluent utterances were compared. Results: Findings revealed that stuttered utterances in Spanish tended to be longer and more often grammatically incorrect, and contain more clauses, including more subordinate and/or conjoined clauses. However, when controlling for the interrelatedness of syllable number and clause number and complexity, only utterance length and grammatical incorrectness were significant predictors of stuttering in the spontaneous speech of these Spanish-speaking children. Use of complex utterances did not appear to contribute to the prediction of stuttering when controlling for utterance length. Conclusions: Results from the present study were consistent with many earlier reports of English-speaking children. Both length and grammatical factors appear to affect stuttering in Spanish-speaking children. Grammatical errors, however, served as the greatest predictor of stuttering.Communication Sciences and Disorder
Fires increase Amazon forest productivity through increases in diffuse radiation
Atmospheric aerosol scatters solar radiation increasing the fraction of diffuse radiation and the efficiency of photosynthesis. We quantify the impacts of biomass burning aerosol (BBA) on diffuse radiation and plant photosynthesis across Amazonia during 1998-2007. Evaluation against observed aerosol optical depth allows us to provide lower and upper BBA emissions estimates. BBA increases Amazon basin annual mean diffuse radiation by 3.4-6.8% and net primary production (NPP) by 1.4-2.8%, with quoted ranges driven by uncertainty in BBA emissions. The enhancement of Amazon basin NPP by 78-156TgCa-1 is equivalent to 33-65% of the annual regional carbon emissions from biomass burning. This NPP increase occurs during the dry season and acts to counteract some of the observed effect of drought on tropical production. We estimate that 30-60TgCa-1 of this NPP enhancement is within woody tissue, accounting for 8-16% of the observed carbon sink across mature Amazonian forests
Probing R-parity violating models of neutrino mass at the Tevatron via top Squark decays
We have estimated the limiting branching ratio of the R-parity violating
(RPV) decay of the lighter top squark, \tilde t_1 \ar l^+ d ( or
and d is a down type quark of any flavor), as a function of top squark
mass(\MST) for an observable signal in the di-lepton plus di-jet channel at
the Tevatron RUN-II experiment with 2 fb luminosity. Our simulations
indicate that the lepton number violating nature of the underlying decay
dynamics can be confirmed via the reconstruction of \MST. The above decay is
interesting in the context of RPV models of neutrino mass where the RPV
couplings () driving the above decay are constrained to be
small (\lsim 10^{-3} - 10^{-4} ). If is the next lightest super
particle - a theoretically well motivated scenario - then the RPV decay can
naturally compete with the R-parity conserving (RPC) modes which also have
suppressed widths. The model independent limiting BR can delineate the
parameter space in specific supersymmetric models, where the dominating RPV
decay is observable and predict the minimum magnitude of the RPV coupling that
will be sensitive to Run-II data. We have found it to be in the same ballpark
value required by models of neutrino mass, for a wide range of \MST. A
comprehensive future strategy for linking top squark decays with models of
neutrino mass is sketched.Comment: 28 pages, 14 Figure
Theories for influencer identification in complex networks
In social and biological systems, the structural heterogeneity of interaction
networks gives rise to the emergence of a small set of influential nodes, or
influencers, in a series of dynamical processes. Although much smaller than the
entire network, these influencers were observed to be able to shape the
collective dynamics of large populations in different contexts. As such, the
successful identification of influencers should have profound implications in
various real-world spreading dynamics such as viral marketing, epidemic
outbreaks and cascading failure. In this chapter, we first summarize the
centrality-based approach in finding single influencers in complex networks,
and then discuss the more complicated problem of locating multiple influencers
from a collective point of view. Progress rooted in collective influence
theory, belief-propagation and computer science will be presented. Finally, we
present some applications of influencer identification in diverse real-world
systems, including online social platforms, scientific publication, brain
networks and socioeconomic systems.Comment: 24 pages, 6 figure
Broken R-parity, stop decays, and neutrino physics
We discuss the phenomenology of the lightest stop in models where R-parity is
broken by bilinear superpotential terms. In this class of models we consider
scenarios where the R-parity breaking two-body decay ~t_1->\tau^+b competes
with the leading three-body decays such as ~t_1->W^+b~\chi^0_1. We demonstrate
that the R-parity violating decay can be sizable and in some parts of the
parameter space even the dominant one. Moreover we discuss the expectations for
\~t_1->\mu^+b and ~t_1->e^+b. The recent results from solar and atmospheric
neutrinos suggest that these are as important as the tau bottom mode. The
\~t_1->l^+b decays are of particular interest for hadron colliders, as they may
allow a full mass reconstruction of the lighter stop. Moreover these decay
modes allow cross checks on the neutrino mixing angle involved in the solar
neutrino puzzle complementary to those possible using neutralino decays. For
the so--called small mixing angle or SMA solution ~t_1->e^+b should be
negligible, while for the large mixing angle type solutions all ~t_1->l^+b
decays should have comparable magnitude.Comment: 51 pages, 6 figures, LaTeX2e and RevTeX4, published versio
Bilinear R-parity violation with flavor symmetry
Bilinear R-parity violation (BRPV) provides the simplest intrinsically
supersymmetric neutrino mass generation scheme. While neutrino mixing
parameters can be probed in high energy accelerators, they are unfortunately
not predicted by the theory. Here we propose a model based on the discrete
flavor symmetry with a single R-parity violating parameter, leading to
(i) correct Cabbibo mixing given by the Gatto-Sartori-Tonin formula, and a
successful unification-like b-tau mass relation, and (ii) a correlation between
the lepton mixing angles and in agreement with
recent neutrino oscillation data, as well as a (nearly) massless neutrino,
leading to absence of neutrinoless double beta decay.Comment: 16 pages, 3 figures. Extended version, as published in JHE
- …
