51 research outputs found

    The potential role of hybridization in diversification and speciation in an insular plant lineage: insights from synthetic interspecific hybrids

    Get PDF
    Hybridization is recognized as an important process in plant evolution, and this may be particularly true for island plants where several biotic and abiotic factors facilitate interspecific hybridization. Although rarely done, experimental studies could provide insights into the potential of natural hybridization to generate diversity when species come into contact in the dynamic island setting. The potential of hybridization to generate morphological variation was analysed within and among 12 families (inbred lines) of an F4 hybrid generation between two species of Tolpis endemic to the Canary Islands. Combinations of characters not seen in the parents were present in hybrids. Several floral and vegetative characters were transgressive relative to their parents. Morphometric studies of floral, vegetative and fruit characters revealed that several F4 families were phenotypically distinct from other families, and from their parents. The study demonstrates that morphologically distinct pollen-fertile lines, potentially worthy of taxonomic recognition if occurring in nature, can be generated in four generations. The ability of the hybrid lines to set self-seed would reduce gene flow among the lines, and among the hybrids and their parental species. Selfing would also facilitate the fixation of characters within each of the lines. Overall, the results show the considerable potential of hybridization for generating diversity and distinct phenotypes in island lineages

    Public Library-Based Social Work Field Placements: Guidance for Public Libraries Planning to Become a Social Work Practicum Site

    Full text link
    Public libraries are increasingly faced with patron psychosocial needs, including mental health problems, substance use, homelessness, or poverty-related needs. Since library staff are often not trained to address these needs, many are choosing to host on-site social work practicum students to provide information and referrals for patrons presenting with psychosocial needs. However, little existing guidance is available about initiating a social work practicum placement, which can leave libraries unprepared and often “reinventing the wheel”. This manuscript provides guidance on the steps that should be considered by libraries intending to host their first social work practicum student

    Rising from the Ashes: Mid-infrared Re-brightening of the Impostor SN 2010da in NGC 300

    Get PDF
    We present multi-epoch mid-infrared (IR) photometry and the optical discovery observations of the "impostor" supernova (SN) 2010da in NGC 300 using new and archival Spitzer Space Telescope images and ground-based observatories. The mid-infrared counterpart of SN 2010da was detected as Spitzer Infrared Intensive Transient Survey (SPIRITS) 14bme in the SPIRITS, an ongoing systematic search for IR transients. Before erupting on 2010 May 24, the SN 2010da progenitor exhibited a constant mid-IR flux at 3.6 and only a slight ~10% decrease at 4.5 μm between 2003 November and 2007 December. A sharp increase in the 3.6 μm flux followed by a rapid decrease measured ~150 days before and ~80 days after the initial outburst, respectively, reveal a mid-IR counterpart to the coincident optical and high luminosity X-ray outbursts. At late times, after the outburst (~2000 days), the 3.6 and 4.5 μm emission increased to over a factor of two times the progenitor flux and is currently observed (as of 2016 Feb) to be fading, but still above the progenitor flux. We attribute the re-brightening mid-IR emission to continued dust production and increasing luminosity of the surviving system associated with SN 2010da. We analyze the evolution of the dust temperature (T_d ~ 700–1000 K), mass (M_d ~ 0.5–3.8 × 10^(−7) M⊙), luminosity (L_(IR) ~ 1.3–3.5 × 10^4 L⊙), and the equilibrium temperature radius (R_(eq) ~ 6.4–12.2 au) in order to resolve the nature of SN 2010da. We address the leading interpretation of SN 2010da as an eruption from a luminous blue variable high-mass X-ray binary (HMXB) system. We propose that SN 2010da is instead a supergiant (sg)B[e]-HMXB based on similar luminosities and dust masses exhibited by two other known sgB[e]-HMXB systems. Additionally, the SN 2010da progenitor occupies a similar region on a mid-IR color–magnitude diagram (CMD) with known sgB[e] stars in the Large Magellanic Cloud. The lower limit estimated for the orbital eccentricity of the sgB[e]-HMXB (e > 0.82) from X-ray luminosity measurements is high compared to known sgHMXBs and supports the claim that SN 2010da may be associated with a newly formed HMXB system

    Unstable Maternal Environment, Separation Anxiety, and Heightened CO2 Sensitivity Induced by Gene-by-Environment Interplay

    Get PDF
    Background: In man, many different events implying childhood separation from caregivers/unstable parental environment are associated with heightened risk for panic disorder in adulthood. Twin data show that the occurrence of such events in childhood contributes to explaining the covariation between separation anxiety disorder, panic, and the related psychobiological trait of CO2 hypersensitivity. We hypothesized that early interference with infant-mother interaction could moderate the interspecific trait of response to CO2 through genetic control of sensitivity to the environment. Methodology: Having spent the first 24 hours after birth with their biological mother, outbred NMRI mice were crossfostered to adoptive mothers for the following 4 post-natal days. They were successively compared to normally-reared individuals for: number of ultrasonic vocalizations during isolation, respiratory physiology responses to normal air (20%O2), CO2-enriched air (6% CO2), hypoxic air (10%O2), and avoidance of CO2-enriched environments. Results: Cross-fostered pups showed significantly more ultrasonic vocalizations, more pronounced hyperventilatory responses (larger tidal volume and minute volume increments) to CO2-enriched air and heightened aversion towards CO2- enriched environments, than normally-reared individuals. Enhanced tidal volume increment response to 6%CO2 was present at 16–20, and 75–90 postnatal days, implying the trait’s stability. Quantitative genetic analyses of unrelated individuals, sibs and half-sibs, showed that the genetic variance for tidal volume increment during 6%CO2 breathing was significantly higher (Bartlett x = 8.3, p = 0.004) among the cross-fostered than the normally-reared individuals, yielding heritability of 0.37 and 0.21 respectively. These results support a stress-diathesis model whereby the genetic influences underlying the response to 6%CO2 increase their contribution in the presence of an environmental adversity. Maternal grooming/licking behaviour, and corticosterone basal levels were similar among cross-fostered and normally-reared individuals. Conclusions: A mechanism of gene-by-environment interplay connects this form of early perturbation of infant-mother interaction, heightened CO2 sensitivity and anxiety. Some no

    A framework for the first‑person internal sensation of visual perception in mammals and a comparable circuitry for olfactory perception in Drosophila

    Get PDF
    Perception is a first-person internal sensation induced within the nervous system at the time of arrival of sensory stimuli from objects in the environment. Lack of access to the first-person properties has limited viewing perception as an emergent property and it is currently being studied using third-person observed findings from various levels. One feasible approach to understand its mechanism is to build a hypothesis for the specific conditions and required circuit features of the nodal points where the mechanistic operation of perception take place for one type of sensation in one species and to verify it for the presence of comparable circuit properties for perceiving a different sensation in a different species. The present work explains visual perception in mammalian nervous system from a first-person frame of reference and provides explanations for the homogeneity of perception of visual stimuli above flicker fusion frequency, the perception of objects at locations different from their actual position, the smooth pursuit and saccadic eye movements, the perception of object borders, and perception of pressure phosphenes. Using results from temporal resolution studies and the known details of visual cortical circuitry, explanations are provided for (a) the perception of rapidly changing visual stimuli, (b) how the perception of objects occurs in the correct orientation even though, according to the third-person view, activity from the visual stimulus reaches the cortices in an inverted manner and (c) the functional significance of well-conserved columnar organization of the visual cortex. A comparable circuitry detected in a different nervous system in a remote species-the olfactory circuitry of the fruit fly Drosophila melanogaster-provides an opportunity to explore circuit functions using genetic manipulations, which, along with high-resolution microscopic techniques and lipid membrane interaction studies, will be able to verify the structure-function details of the presented mechanism of perception

    Processing of Body Odor Signals by the Human Brain

    Get PDF
    Brain development in mammals has been proposed to be promoted by successful adaptations to the social complexity as well as to the social and non-social chemical environment. Therefore, the communication via chemosensory signals might have been and might still be a phylogenetically ancient communication channel transmitting evolutionary significant information. In humans, the neuronal underpinnings of the processing of social chemosignals have been investigated in relation to kin recognition, mate choice, the reproductive state and emotional contagion. These studies reveal that human chemosignals are probably not processed within olfactory brain areas but through neuronal relays responsible for the processing of social information. It is concluded that the processing of human social chemosignals resembles the processing of social signals originating from other modalities, except that human social chemosignals are usually communicated without the allocation of attentional resources, that is below the threshold of consciousness. Deviances in the processing of human social chemosignals might be related to the development and maintenance of mental disorders

    Nature

    Get PDF
    The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different basolateral amygdala (BLA) projections are potentiated following reward or punishment learning1–7. However, we do not yet understand how valence specific information is routed to the BLA neurons with the appropriate downstream projections. Nor do we understand how to reconcile the subsecond timescales of synaptic plasticity8–11 with the longer timescales separating the predictive cues from their outcomes. Here, we demonstrate that neurotensin (NT) neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, while PVT-BLA projection-specific Nt gene knockout augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nt gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference to active behavioral strategies to reward and punishment predictive cues. Taken together, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviorally-relevant timescales
    corecore