43 research outputs found

    ‘RE/TRS’ is a Girl’s Subject: Talking about Gender and the Discourse of ‘Religion’ in UK Educational Spaces

    Get PDF
    This article addresses what appears to be a retrenchment into narrower forms of identification and an increased suspicion of difference in the context of educational policy in the UK – especially in relation to ‘Religious Education’. The adoption of standardized management protocols – ‘managerialism’ – across most if not all policy contexts including public educational spaces reduces spaces for encountering or addressing genuine difference and for discovering something new and different. A theory of the ‘feminization of religion’ associated historically with Barbara Welter, provides some useful insights as to why this might be, suggesting that those in British society who would prefer to see greater separation from ‘religion’ in ‘secular’ schools may well also be caught up in forms of gender stereotyping

    Anti-prion drug mPPIg5 inhibits PrP(C) conversion to PrP(Sc).

    Get PDF
    Prion diseases, also known as transmissible spongiform encephalopathies, are a group of fatal neurodegenerative diseases that include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob disease (CJD) in humans. The 'protein only hypothesis' advocates that PrP(Sc), an abnormal isoform of the cellular protein PrP(C), is the main and possibly sole component of prion infectious agents. Currently, no effective therapy exists for these diseases at the symptomatic phase for either humans or animals, though a number of compounds have demonstrated the ability to eliminate PrPSc in cell culture models. Of particular interest are synthetic polymers known as dendrimers which possess the unique ability to eliminate PrP(Sc) in both an intracellular and in vitro setting. The efficacy and mode of action of the novel anti-prion dendrimer mPPIg5 was investigated through the creation of a number of innovative bio-assays based upon the scrapie cell assay. These assays were used to demonstrate that mPPIg5 is a highly effective anti-prion drug which acts, at least in part, through the inhibition of PrP(C) to PrP(Sc) conversion. Understanding how a drug works is a vital component in maximising its performance. By establishing the efficacy and method of action of mPPIg5, this study will help determine which drugs are most likely to enhance this effect and also aid the design of dendrimers with anti-prion capabilities for the future

    Molecular Structure of Amyloid Fibrils Controls the Relationship between Fibrillar Size and Toxicity

    Get PDF
    According to the prevailing view, soluble oligomers or small fibrillar fragments are considered to be the most toxic species in prion diseases. To test this hypothesis, two conformationally different amyloid states were produced from the same highly pure recombinant full-length prion protein (rPrP). The cytotoxic potential of intact fibrils and fibrillar fragments generated by sonication from these two states was tested using cultured cells.For one amyloid state, fibril fragmentation was found to enhance its cytotoxic potential, whereas for another amyloid state formed within the same amino acid sequence, the fragmented fibrils were found to be substantially less toxic than the intact fibrils. Consistent with the previous studies, the toxic effects were more pronounced for cell cultures expressing normal isoform of the prion protein (PrP(C)) at high levels confirming that cytotoxicity was in part PrP(C)-dependent. Silencing of PrP(C) expression by small hairpin RNAs designed to silence expression of human PrP(C) (shRNA-PrP(C)) diminished the deleterious effects of the two amyloid states to a different extent, suggesting that the role of PrP(C)-mediated and PrP(C)-independent mechanisms depends on the structure of the aggregates.This work provides a direct illustration that the relationship between an amyloid's physical dimension and its toxic potential is not unidirectional but is controlled by the molecular structure of prion protein (PrP) molecules within aggregated states. Depending on the structure, a decrease in size of amyloid fibrils can either enhance or abolish their cytotoxic effect. Regardless of the molecular structure or size of PrP aggregates, silencing of PrP(C) expression can be exploited to reduce their deleterious effects

    The N-Terminal, Polybasic Region Is Critical for Prion Protein Neuroprotective Activity

    Get PDF
    Several lines of evidence suggest that the normal form of the prion protein, PrPC, exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrPC to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (Δ32–134, called F35). To define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of PrP (Δ23–31, Δ23–111, and Δ23–134) to rescue the phenotype of Tg(F35) mice. Surprisingly, all of these mutants displayed greatly diminished rescue activity, although Δ23–31 PrP partially suppressed neuronal loss when expressed at very high levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrPC neuroprotective activity, and suggest that identification of molecules interacting with this region will provide important clues regarding the normal function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for treatment of prion diseases

    Structural features within the nascent chain regulate alternative targeting of secretory proteins to mitochondria

    No full text
    Protein targeting to specified cellular compartments is essential to maintain cell function and homeostasis. In eukaryotic cells, two major pathways rely on N-terminal signal peptides to target proteins to either the endoplasmic reticulum (ER) or mitochondria. In this study, we show that the ER signal peptides of the prion protein-like protein shadoo, the neuropeptide hormone somatostatin and the amyloid precursor protein have the property to mediate alternative targeting to mitochondria. Remarkably, the targeting direction of these signal peptides is determined by structural elements within the nascent chain. Each of the identified signal peptides promotes efficient ER import of nascent chains containing alpha-helical domains, but targets unstructured polypeptides to mitochondria. Moreover, we observed that mitochondrial targeting by the ER signal peptides correlates inversely with ER import efficiency. When ER import is compromised, targeting to mitochondria is enhanced, whereas improving ER import efficiency decreases mitochondrial targeting. In conclusion, our study reveals a novel mechanism of dual targeting to either the ER or mitochondria that is mediated by structural features within the nascent chain
    corecore