3,426 research outputs found

    Functional Traits Explain Amphibian Distribution in the Brazilian Atlantic Forest

    Get PDF
    Aim: Species distributions are one of the most important ways to understand how communities interact through macroecological relationships. The functional abilities of a species, such as its plasticity in various environments, can determine its distribution and beta diversity patterns. In this study, we evaluate how functional traits influence the distribution of amphibians, and hypothesize which functional traits explain the current pattern of amphibian species composition in the Atlantic Forest. Location: Atlantic Forest, Brazil. Methods: Using potential distributions of Brazilian Atlantic Forest of amphibian species, we analysed the relative importance of abiotic factors and species functional traits in explaining species richness, endemism (with permutation multivariate analysis), and beta diversity components (i.e. total, turnover and nestedness dissimilarities). Results: Environmental variables explained 59.5% of species richness, whereas functional traits explained 15.8% of species distribution for Anuran and 88.8% for 58 Gymnophiona. Body size had the strongest correlation with the species distribution. Results of nestedness dissimilarities showed that species with medium to large body size, and species that are adapted to living in open areas tended to disperse from west to east direction. Current forest changes directly affected beta diversity patterns (i.e. most species adapted to novel environments increased their ranges). Beta diversity partitioning between humid and dry forests showed decreased nestedness and increased turnover by increasing altitude in the southeastern region of the Atlantic Forest. Main conclusions: Our study shows that functional traits directly influence the ability of the species to disperse. With the alterations of the natural environment, species more apt to these alterations have dispersed or increased their distribution, which consequently changes community structure. As result, there is nested species distribution patterns and homogenization of amphibian species composition throughout the Brazilian Atlantic Forest

    Extension of Type 2 Diabetes Genome-Wide Association Scan Results in the Diabetes Prevention Program

    Get PDF
    OBJECTIVE— Genome-wide association scans (GWASs) have identified novel diabetes-associated genes. We evaluated how these variants impact diabetes incidence, quantitative glycemic traits, and response to preventive interventions in 3,548 subjects at high risk of type 2 diabetes enrolled in the Diabetes Prevention Program (DPP), which examined the effects of lifestyle intervention, metformin, and troglitazone versus placebo

    Quantitative acoustic differentiation of cryptic species illustrated with King and Clapper rails

    Get PDF
    Reliable species identification is vital for survey and monitoring programs. Recently, the development of digital technology for recording and analyzing vocalizations has assisted in acoustic surveying for cryptic, rare, or elusive species. However, the quantitative tools that exist for species differentiation are still being refined. Using vocalizations recorded in the course of ecological studies of a King Rail (Rallus elegans) and a Clapper Rail (Rallus crepitans) population, we assessed the accuracy and effectiveness of three parametric (logistic regression, discriminant function analysis, quadratic discriminant function analysis) and six nonparametric (support vector machine, CART, Random Forest, kĂąâ‚Źïżœnearest neighbor, weighted kĂąâ‚Źïżœnearest neighbor, and neural networks) statistical classification methods for differentiating these species by their kek mating call. We identified 480 kek notes of each species and quantitatively characterized them with five standardized acoustic parameters. Overall, nonparametric classification methods outperformed parametric classification methods for species differentiation (nonparametric tools were between 57% and 81% accurate, parametric tools were between 57% and 60% accurate). Of the nine classification methods, Random Forest was the most accurate and precise, resulting in 81.1% correct classification of kek notes to species. This suggests that the mating calls of these sister species are likely difficult for human observers to tell apart. However, it also implies that appropriate statistical tools may allow reasonable speciesĂąâ‚Źïżœlevel classification accuracy of recorded calls and provide an alternative to species classification where other captureĂąâ‚Źïżœ or genotypeĂąâ‚Źïżœbased survey techniques are not possible

    Revolutions from above: worker training as trasformismo in South Korea

    Get PDF
    While making very substantial changes to the population's working conditions, government strategies to foster economic development in South Korea have historically attempted to keep worker involvement, in terms of influence on the process, to a bare minimum. Applying the Gramscian concept of passive revolution, this article analyses governance mechanisms and production relations over a history of authoritarianism and up to the contemporary period of democratic reform. Trasformismo, which is a strategy of limited concessions, has been provided via vocational training for workers. Despite this attempt at inclusion, it is concluded that workers have not enjoyed full participation in negotiation for their welfare at any time in Korean history

    Positive youth development in swimming: clarification and consensus of key psychosocial assets

    Get PDF
    The purpose of this study was to gain a more cohesive understanding of the assets considered necessary to develop in young swimmers to ensure both individual and sport specific development. This two stage study involved (a) a content analysis of key papers to develop a list of both psychosocial skills for performance enhancement and assets associated with positive youth development, and (b) in-depth interviews involving ten expert swim coaches, practitioners and youth sport scholars. Five higher order categories containing seventeen individual assets emerged. These results are discussed in relation to both existing models of positive youth development and implications for coaches, practitioners and parents when considering the psychosocial development of young British swimmers

    To what extent is behaviour a problem in English schools?:Exploring the scale and prevalence of deficits in classroom climate

    Get PDF
    The working atmosphere in the classroom is an important variable in the process of education in schools, with several studies suggesting that classroom climate is an important influence on pupil attainment. There are wide differences in the extent to which classroom climate is considered to be a problem in English schools. Some ‘official’ reports suggest that behaviour in schools is ‘satisfactory or better’ in the vast majority of schools; other sources have pointed to behaviour being a serious and widespread problem. The paper details four studies conducted over the past decade which aimed to explore these disparities. The aim of the research was to gain a more accurate insight into the extent to which deficits in classroom climate limit educational attainment and equality of educational opportunity in English schools. The findings question the suggestion that behaviour is satisfactory or better in 99.7% of English schools and the concluding section suggests ways in which deficits in classroom climate might be addressed. Although the study is limited to classrooms in England, OECD studies suggest that deficits in the working atmosphere in classrooms occur in many countries. The study therefore has potential relevance for education systems in other countries

    Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change

    Get PDF
    Polar bears (PBs) are superbly adapted to the extreme Arctic environment and have become emblematic of the threat to biodiversity from global climate change. Their divergence from the lower-latitude brown bear provides a textbook example of rapid evolution of distinct phenotypes. However, limited mitochondrial and nuclear DNA evidence conflicts in the timing of PB origin as well as placement of the species within versus sister to the brown bear lineage. We gathered extensive genomic sequence data from contemporary polar, brown, and American black bear samples, in addition to a 130,000-to 110,000-y old PB, to examine this problem from a genome-wide perspective. Nuclear DNA markers reflect a species tree consistent with expectation, showing polar and brown bears to be sister species. However, for the enigmatic brown bears native to Alaska's Alexander Archipelago, we estimate that not only their mitochondrial genome, but also 5-10% of their nuclear genome, is most closely related to PBs, indicating ancient admixture between the two species. Explicit admixture analyses are consistent with ancient splits among PBs, brown bears and black bears that were later followed by occasional admixture. We also provide paleodemographic estimates that suggest bear evolution has tracked key climate events, and that PB in particular experienced a prolonged and dramatic decline in its effective population size during the last ca. 500,000 years. We demonstrate that brown bears and PBs have had sufficiently independent evolutionary histories over the last 4-5 million years to leave imprints in the PB nuclear genome that likely are associated with ecological adaptation to the Arctic environment. demographic history | hybridization | mammalian genomics | phylogenetics G enome-scale studies of speciation and admixture have become essential tools in evolutionary analyses of recently diverged lineages. For example, paradigm-shifting genomic research on archaic and anatomically modern humans has identified critical gene flow events during hominin history (1, 2). However, aside from several analyses of domesticated species and their wild relatives (e.g., ref. 3), studies that use whole-genome sequencing to investigate admixture in wildlife populations are only now beginning to emerge. The bear family (Ursidae, Mammalia) represents an excellent, largely untapped model for investigating complex speciation and rapid evolution of distinct phenotypes. Although polar bears (PBs; Ursus maritimus) and brown bears (Ursus arctos) are considered separate species, analyses of fossil evidence and mitochondrial sequence data have indicated a recent divergence of PBs from within brown bears (surveyed in ref. 4). For example, phylogenetic analyses of complete mitochondrial genomes, including from a unique 130,000-to 110,000-y-old PB jawbone from Svalbard, Norway, confirmed a particularly close relationship between PB and a genetically isolated population of brown bears from the Admiralty, Baranof, and Chichagof islands in Alaska's Alexander Archipelago (hereafter referred to as ABC brown bears) and suggested a split of their maternal lineages ∌150 kya (4). This recent divergence and paraphyletic relationship raises questions whether there has been sufficient time for full reproductive isolation to develop (5). Despite being fully distinct species throughout most of their ranges (6), interbreeding between polar and brown bears has occurred in captivity (7), and although extremely rare, natural hybrids have recently been documented. Indeed, limited evidence from short stretches of mitochondrial DNA suggests that hybridization may have occurred between polar and brown bears shortly after they diverged from one another (8). However, further evidence from biparentally inherited nuclear DNA is required to critically evaluate this possibility, and in particular to determine what fraction of the extant bear genome has been sculpted by gene flow between brown bears and PBs. Although nuclear DNA sequence data recently indicated that the PB may have become genetically distinct from brown bears approximately 600 kya (9), a gene-by-gene sequencing approach of single nuclear markers clearly lacks sufficient power to detect potential ancient admixture

    Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration

    Get PDF
    Peatlands have been subject to artificial drainage for centuries. This drainage has been in response to agricultural demand, forestry, horticultural and energy properties of peat and alleviation of flood risk. However, the are several environmental problems associated with drainage of peatlands. This paper describes the nature of these problems and examines the evidence for changes in hydrological and hydrochemical processes associated with these changes. Traditional black-box water balance approaches demonstrate little about wetland dynamics and therefore the science of catchment response to peat drainage is poorly understood. It is crucial that a more process-based approach be adopted within peatland ecosystems. The environmental problems associated with peat drainage have led, in part, to a recent reversal in attitudes to peatlands and we have seen a move towards wetland restoration. However, a detailed understanding of hydrological, hydrochemical and ecological process-interactions will be fundamental if we are to adequately restore degraded peatlands, preserve those that are still intact and understand the impacts of such management actions at the catchment scale
    • 

    corecore