647 research outputs found

    The Effect of Cu Zn Disorder on Charge Carrier Mobility and Lifetime in Cu2ZnSnSe4

    Get PDF
    Cu Zn disorder is one possible origin for the limited efficiencies of kesterite solar cells and its impact on the band gap and band tails have been intensively studied. However, the effect on charge transport and recombination, which are key properties for solar cells, has not been investigated so far. Therefore, we probe the impact of the Cu Zn order on charge carrier mobility and lifetime. To this end, we change the Cu Zn order of a co evaporated Cu2ZnSnSe4 thin film by sequential annealing and probe the impact by time resolved terahertz spectroscopy. Aside from of the well known band gap shift, we find no significant change in mobility and lifetime with Cu Zn order. This finding indicates that Cu Zn disorder is not limiting efficiencies of kesterite solar cells at their current status by means of charge carrier recombination and transpor

    Transport properties of CuGaSe(2)-based thin-film solar cells as a function of absorber composition

    Get PDF
    The transport properties of thin-film solar cells based on wide-gap CuGaSe(2) absorbers have been investigated as a function of the bulk [Ga]/[Cu] ratio ranging from 1.01 to 1.33. We find that (i) the recombination processes in devices prepared from absorbers with a composition close to stoichiometry ([Ga]/[Cu] = 1.01) are strongly tunnelling assisted resulting in low recombination activation energies (E(a)) of approx. 0.95 eV in the dark and 1.36 eV under illumination. (ii) With an increasing [Ga]/[Cu] ratio, the transport mechanism changes to be dominated by thermally activated Shockley-Read-Hall recombination with similar E(a) values of approx. 1.52-1.57 eV for bulk [Ga]/[Cu] ratios of 1.12-1.33. The dominant recombination processes take place at the interface between CdS buffer and CuGaSe(2) absorber independently from the absorber composition. The increase of E(a) with the [Ga]/[Cu] ratio correlates with the open circuit voltage and explains the better performance of corresponding solar cells

    Examination of Na-Doped Mo Sputtering for CIGS Devices: Cooperative Research and Development Final Report, CRADA Number CRD-10-375

    Get PDF
    This work has investigated the use of Na doped Mo (MONA) sputtering targets for use in preparing CIGS devices. The Mo:Na material is doped to about 3% Na by weight, implying that a 40 nm layer on top of the standard Mo contact contains sufficient Na to dope a 2.5 ..mu..m CIGS film. The ability to control Na doping independent of both CIGS processing conditions and adhesion is an important gain for industry and research. Manufacturers gain a route to increased manufacturability and performance, while NREL researchers gain a tightened performance distribution of devices and increased process flexibility. Our immediate partner in this work, the Climax Molybdenum Technology Center, gains validation of their product

    Performance Limiting Factors of Cu2ZnSn(SxSe1-x)4 Solar Cells Prepared by Thermal Evaporation

    Get PDF
    Cu2ZnSn(SxSe1−x)4 (CZTSSe) thin film solar cells have been prepared by vacuum-based thermal evaporation of metal and binary sulfide precursors followed by annealing in a mixed chalcogen vapor at 550 °C for one hour. The Zn/Sn ratio in the precursor was varied from 0.75 to 1.50 keeping the Cu/(Zn+Sn) ratio constant at 0.7. The best performing solar cell was obtained with a final film composition of Cu/(Zn+Sn)=0.77 and Zn/Sn=1.13 corresponding to a Zn/Sn ratio of 0.9 in the precursor. The champion cell exhibited an open-circuit voltage (VOC) of 506 mV, short-circuit current density (JSC) of 22.92 mA/cm2, and a fill factor (FF) of 35% resulting in a total area efficiency (η) of 4.06% without any antireflection coating. Cell performance was found to be limited by high series resistance (RS)=31.1 Ω and a low shunt resistance (Rsh)=125.2 Ω. No detrimental secondary phases, such as Cu2−xS(Se) or ZnS were detected in the absorber film. Microstructural investigation suggested that small multigrain structure of the CZTSSe absorber layer, presence of an interfacial Mo(S,Se)x blocking barrier, and micro-air-voids at the Mo back contact are the major contributors to the origin of high Rs. Morphological study of the CZTSSe film surface by atomic force microscopy revealed micro-pores that act as low resistance shunt paths and explains the source of such low Rsh. The performance limiting factors of the vacuum based thermally evaporated CZTSSe thin film solar cells are reported

    Movement of cracked silicon solar cells during module temperature changes

    Get PDF
    Cracks in crystalline silicon solar cells can lead to substantial power loss. While the cells’ metal contacts can initially bridge these cracks and maintain electrical connections, the bridges are damaged by mechanical loads, including those due to temperature changes. We investigated the metallization bridges that form over cracks in encapsulated silicon solar cells. Microscopic characterization showed that the crack in the silicon can immediately propagate through the metal grid, but the grid can maintain electrical contact once the load is removed. We also quantified the movement of the cell fragments separated by a crack as a function of temperature. Cell fragments are free to move diagonally and to rotate, so the change in gap across the crack during a temperature change varies along the length of the crack. In one sample, we showed that a 10 ◦C temperature change, causing a 2 µm increase in the separation of cell fragments, was sufficient to cause a reversible electrical disconnection of metallization bridging a crack

    The effect of Zn excess on kesterite solar cells

    Get PDF
    a b s t r a c t Accuracy in composition control has been one of the top issues for fabricating high-performance kesterite (Cu 2 ZnSn(Se,S) 4 ) solar cells. A detailed understanding of the effect of Zn excess on device performance has not yet been demonstrated. Thus, specific criteria for high-performance devices, in particular discriminating between the effects of Zn-rich features at the front versus the back of the absorber, are desired. In this study, we report that co-evaporated kesterite absorbers can demonstrate high device efficiency despite the presence of large quantities of ZnSe. However, the benign presence of ZnSe is found to be conditional. While large ZnSe grains on the back of the absorbers are not harmful to device performance, the ZnSe grains produced by excess Zn near the end of the deposition degrade the cell efficiency from 8% level to 6% level (without anti-reflection coatings). The other effect related to excess Zn on the front of absorber is the facilitation of breakdown in lower reverse bias. The breakdown indicated here occurs only under the illumination of blue photons, and to our best knowledge has not been reported before. The exact mechanism of the breakdown remains open, but it is demonstrated to be related to the photoconductivity of CdS, and is thus possibly a symptom of lateral defect issues in the absorber, caused by the overdose of Zn. The same type of issue contributing to the breakdown may also be responsible for part of the parasitic loses at the working voltage, and therefore warrants further research

    Daily Performance Changes in Metal Halide Perovskite PV Modules

    Get PDF
    Metal halide perovskite photovoltaic modules deployed outdoors and held at their maximum power point show daily, reversible, relative changes of up to 30% in efficiency between morning and afternoon. Predicting energy yield and quantifying reliability will require properly handling such daily performance changes

    Electrical, morphological and structural properties of RF magnetron sputtered Mo thin films for application in thin film photovoltaic solar cells

    Get PDF
    Molybdenum (Mo) thin films were deposited using radio frequency magnetron sputtering, for application as a metal back contact material in ‘‘substrate configuration’’ thin film solar cells. The variations of the electrical, morphological, and structural properties of the deposited films with sputtering pressure, sputtering power and post-deposition annealing were determined. The electrical conductivity of the Mo films was found to increase with decreasing sputtering pressure and increasing sputtering power. X-ray diffraction data showed that all the films had a (110) preferred orientation that became less pronounced at higher sputtering power while being relatively insensitive to process pressure. The lattice stress within the films changed from tensile to compressive with increasing sputtering power and the tensile stress increased with increasing sputtering pressure. The surface morphology of the films changed from pyramids to cigar-shaped grains for a sputtering power between 100 and 200 W, remaining largely unchanged at higher power. These grains were also observed to decrease in size with increasing sputtering pressure. Annealing the films was found to affect the resistivity and stress of the films. The resistivity increased due to the presence of residual oxygen and the stress changed from tensile to compressive. The annealing step was not found to affect the crystallisation and grain growth of the Mo films
    corecore