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Abstract 

Cu2ZnSn(SxSe1-x)4 (CZTSSe) thin film solar cells have been prepared by vacuum-based thermal 

evaporation of metal and binary sulfide precursors followed by annealing in a mixed chalcogen 

vapor at 550°C for one hour. The Zn/Sn ratio in the precursor was varied from 0.75-1.50 

keeping the Cu/(Zn+Sn) ratio constant at 0.7. The best performing solar cell was obtained with a 

final film composition of Cu/(Zn+Sn) = 0.77 and Zn/Sn = 1.13 corresponding to a Zn/Sn ratio of 

0.9 in the precursor. The champion cell exhibited an open-circuit voltage (VOC) of 506 mV, short-

circuit current density (JSC) of 22.92 mA/cm2, and a fill factor (FF) of 35% resulting in a total area 

efficiency (η) of 4.06% without any antireflection coating. Cell performance was found to be 

limited by high series resistance (RS) = 31.1 Ω and a low shunt resistance (Rsh) = 125.2 Ω. No 

detrimental secondary phases, such as Cu2-xS(Se) or ZnS were detected in the absorber film. 

Microstructural investigation suggested that small multigrain structure of the CZTSSe absorber 

layer, presence of an interfacial Mo(S,Se)y blocking barrier, and micro air-voids at the Mo back 

contact are the major contributors to the origin of high Rs. Morphological study of the CZTSSe 

film surface by atomic force microscopy revealed micro-pores that act as low resistance shunt 

paths and explains the source of such low Rsh. The performance limiting factors of the vacuum 

based thermally evaporated CZTSSe thin film solar cells are reported. 

Keywords: CZTSSe, Thin film, Solar cell, Thermal evaporation, Earth-abundant 

© 2015. This manuscript version is made available under the Elsevier user license
http://www.elsevier.com/open-access/userlicense/1.0/

mailto:mandalk@cec.sc.edu


1. Introduction 

Cu-based kesterite compound, Cu2ZnSn(SxSe1-x)4 (CZTSSe) has recently emerged as the most 

promising photo-absorber material for low-cost high-efficiency thin film solar cells (TFSC), 

alternative to the current benchmark TFSC technologies based on CuInGaSe2 (CIGS) and CdTe 

absorbers [1-5]. A tunable direct bandgap in the range of 1.0-1.5 eV for optimal terrestrial 

photoconversion and a large optical absorption co-efficient in the order of 104-105 cm-1 makes 

CZTSSe an excellent solar absorber for thin film solar cells. Using earth-abundant, non-toxic, 

and relatively inexpensive constituent elements, CZTSSe can support terawatt-scale module 

production in the near future and resolves commercial sustainability and/or environmental 

issues pertaining to CIGS/CdTe-based technologies [6, 7]. 

Efficiency of the CZTSSe-based thin film solar cells have been improved quite significantly over 

the past decade since the first report by Katagiri et al. in 1997 [1]. Several fabrication routes for 

the absorber layer preparation have been investigated including vacuum-based evaporation [1-

5] and sputtering techniques [8, 9], as well as non-vacuum approaches using nanoparticle inks 

[10, 11], hydrazine-based solution-particle slurry [12, 13], electrodeposition [14, 15], spray 

pyrolysis [16, 17], and open atmosphere chemical vapor deposition (OACVD) [18]. Recently, an 

astounding photoconversion efficiency of 12.6% has been reported for CZTSSe solar cells with 

the absorber layer prepared by a non-vacuum process developed by IBM group that used 

hydrazine-based hybrid solution-particle slurry [13]. However, use of highly toxic and hazardous 

hydrazine severely limits the scalability of this process for commercial production. 

On the other hand, vacuum-based physical vapor deposition methods are well-established 

standards for growing high-quality thin films in the semiconductor industry. Particularly, thermal 

evaporation method has been proved to be a commercially scalable and cost effective method 

to grow high quality CIGS and CdTe thin films in the past with unprecedented reproducibility, 

achieving high efficiency solar cells [19, 20]. In this article, we report on the fabrication and 

characterization of CZTSSe solar cells prepared by vacuum-based thermal evaporation 



technique. The investigation results specifically focused on the identification of the major factors 

that play key role in the photovoltaic performance of the thermally evaporated CZTSSe solar 

cells and directly correlate their electronic/photovoltaic properties with the absorber layer 

composition, microstructure, and back contact interface. Our results suggest the possible 

pathways for further improvements of the kesterite CZTSSe-based solar cells. 

 

2. Experimental 

2.1. CZTSSe absorber film and solar cell fabrication 

The CZTSSe photoactive absorber layer was prepared in a vacuum-based two-step process. In 

the first step, high purity ZnS (99.99%), Cu (99.999%), and Sn (99.999%) were evaporated 

sequentially on molybdenum (Mo) coated soda-lime glass (SLG) substrates forming a stacked 

precursor layer of ZnS/Cu/Sn on SLG/Mo. In the second step, the precursor stacks were 

annealed under a mixed sulfur and selenium vapor at 550°C for one hour under atmospheric 

pressure to react with the precursor stack forming the polycrystalline CZTSSe film. The bi-layer 

Mo back contact with an approximate thickness of 700 nm was deposited by DC sputtering on 

the SLG substrate. A vacuum thermal evaporator (CHA - SE 600) was used for the physical 

vapor deposition of ZnS, Cu, and Sn precursors. The thermal evaporation system is equipped 

with three individual sources and all three layers of the precursor stacks were sequentially 

deposited in one vacuum cycle. A base vacuum of 2×10-6 torr was attained prior to the 

deposition. An Inficon XTC/2 thin film deposition controller connected to a quartz crystal 

thickness monitor was programmed for automated deposition of each layer in the stack within 

±1% tolerance of the desired value. 

Photovoltaic (PV) performance of CZTSSe-based solar cell is highly composition sensitive [21]. 

The major challenge in fabricating a PV grade CZTSSe absorber layer is to control the final film 

composition that is favorable for an efficient solar cell. As a general consensus, high efficiency 

cells could be obtained with a Cu-poor and Zn-rich composition in the absorber layer, whereas 



stoichiometric films have been reported to show inferior PV performance. During the high 

temperature sulfurization/selenization process, Sn loss from the precursor as volatile Sn(S,Se)z 

have been reported, which complicates the film growth process. Also, the processing 

parameters during the absorber growth, such as peak temperature, temperature profile, 

annealing duration, S/Se vapor pressure etc. play key role in the quality of the fabricated films 

and resulting photovoltaic properties. Therefore, fabrication of a good quality CZTSSe absorber 

film is a challenging task. We have fabricated 7 sets of precursor films with a composition 

variation in a broad range. The Zn/Sn ratio was varied from 0.75-1.50 keeping the Cu/(Zn+Sn) 

ratio fixed at 0.7. The composition variation was achieved by changing relative thickness of the 

precursor layers in the stack. ZnS thickness was kept constant at 300 nm for all precursors 

while the thickness of Cu and Sn layers were varied to obtain different compositions of the 

precursors. The details of all precursor layer thicknesses and compositions are summarized in 

Table I. The heterojunction was formed by a thin (~50 nm) n-CdS layer deposited on the as-

grown p-CZTSSe films by a low-cost chemical bath deposition (CBD) technique. Rest of the 

device was completed following the structure of a standard CIGS cell with a final device 

structure of SLG/Mo/p-CZTSSe/n-CdS/i-ZnO/Al:ZnO/Al. Individual cells were mechanically 

scribed after completion of the entire device fabrication process. Measured individual cell areas 

were approximately 0.42 cm2 with about 5% shading incurred due to the top Al grid lines. No 

antireflection coating was deposited on the devices reported here. 

 

2.2. CZTSSe film and solar cell characterization 

Elemental atomic composition and phase purity of the as-grown CZTSSe films were 

investigated by energy dispersive X-ray spectroscopy (EDX) and Raman spectroscopy 

respectively. The film surface morphology was studied by atomic force microscopy (AFM). Out 

of seven precursor sets as detailed in Table I, the cells fabricated on the CZTSSe film 



corresponding to the precursor set 3c showed best photovoltaic performance with the champion 

cell efficiency of 4.06%. 

Raman spectroscopy was performed using a micro-Raman setup equipped with a 632 nm laser 

of ~2 μm spot size. The setup was calibrated to known Si peak at 520.7 cm-1 prior to the 

measurement. SEM images and EDX data were collected using a high resolution Zeiss 

Ultraplus field emission scanning electron microscope (FESEM) equipped with EDX 

microanalysis. It is to note that the EDX data were collected on the bare CZTSSe film surface 

without the top CdS/ZnO layers for best accuracy. AFM imaging was carried out using a 

Picoplus AFM setup operated in tapping mode. 

J-V characteristics of the solar cells were measured using a Keithley 237 source-measure unit 

(SMU) and data acquisition was performed through custom-built Labview program. The PV 

performance of the cells were measured under calibrated AM 1.5 (100 mW/cm2) simulated solar 

irradiation using an Oriel (Newport corporation) class ABB solar simulator. The maximum 

increase of the cell temperature during the measurement under illumination was limited to <2°C. 

 

3. Results and discussion 

3.1. CZTSSe film properties 

Structural and compositional studies of the CZTSSe films were carried out by Raman 

spectroscopy and EDX analysis. Raman spectra of the CZTSSe absorber film corresponding to 

each cell (1-7) are plotted in Fig. 1 (a). Peak positions of possible binary and ternary phases 

(marked with black arrows) along with the signature peak positions for pentanary kesterite 

CZTSSe (marked with red arrows) are shown in Fig 1(b) as reference. The major peak 

corresponding to 326.6 cm-1 is attributed to the A1 vibrational mode of the sulfur atoms present 

in the CZTSSe crystal lattice. The other broad peak at lower wavenumber region consists of two 

individual peaks – one at 211.5 cm-1 and the other at 218.1 cm-1. The peak at 211.5 cm-1 is 

attributed to the A1 vibrational mode of Se atoms in CZTSSe and is in well agreement with the 

http://www.zeiss.com/us/nts


reported Raman shifts observed in CZTSSe thin films and bulk crystals [22-26]. The other peak 

at 218.1 cm-1 corresponds to a SnS secondary phase which formed during 

sulfurization/selenization process. Also, the small peak detected at 191.8 cm-1 can be attributed 

to the SnS/SnSe2 phases. Two other relatively less intense Raman peaks related to CZTSSe 

were found at 176.4 cm-1 and 229 cm-1 as indexed in Fig 1(a). However, no other eminent peaks 

corresponding to secondary phases, such as ZnSe (205 cm-1 and 251 cm-1), Cu2-xS/Cu2-xSe 

(475 cm-1/260 cm-1), Sn2S3 (304 cm-1), and Cu2SnS3/Cu2SnSe3 (318 cm-1/180 cm-1) were 

observed for Cell 2-7. Cell 1 showed formation of Cu2SnS3/Cu2SnSe3 phases along with SnSe2 

and a trace of ZnS other than the Sn-chalcogenide phases. Hsu et al. reported that the ternary 

copper-tin-sulfide/selenide phase forms during the sulfurization/selenization process which 

further reacts with the binary ZnS resulting in the quaternary CZTS/CZTSe [27]. Presence of 

undesired binary/ternary phases in the absorber film suggests incomplete 

sulfurization/selenization or incomplete phase transformation. These secondary phases are 

expected to adversely affect the cell performance which is evident from the PV performance 

measurements on Cell 1. A prominent peak corresponding to CZTS appeared in Cell 2 and the 

Cu2SnSe3 phase disappeared. However, SnS/SnSe2 phases and a trace amount of ZnS could 

still be observed. The broad peaks corresponding to Cell 3 suggests existence of the undesired 

Sn-chalcogenide binary phases as evident from the small humps. The Raman data indicates 

that Cell 4-7 were sufficiently sulfurized/selenized with sharp peaks corresponding to CZTSSe 

and without any significant secondary peaks other than SnS which supports the superior 

photovoltaic response of Cell 4. The possible reason for incomplete reaction at Cell 1 location is 

the obstruction of smooth lateral flow of S/Se vapor by the edge of the horizontally placed 

substrate. 

The elemental composition analysis data for the film corresponding to cell 4 are summarized in 

Table II. Composition of the CZTSSe film was found to be Cu-poor and slightly Zn-rich with a 

Cu/(Zn+Sn) ratio of 0.773 and a Zn/Sn ratio of 1.13. It is evident that considerable amount of Sn 



was lost in the sulfurization/selenization stage which turned the Sn-rich precursor into a Zn-rich 

film. 

 

3.2. Photovoltaic performance and device characteristics 

The J-V characteristics of cell 4 under dark and under AM 1.5 (100 mW/cm2) illumination are 

shown in Fig. 2. The champion cell (cell 4) exhibited an open-circuit voltage (VOC) of 506 mV, 

short-circuit current density (JSC) of 22.92 mA/cm2, and a fill factor (FF) of 35% resulting in a 

total area efficiency of 4.06%. A series resistance (Rs) of 31.1 Ω and a shunt resistance (Rsh) of 

125.2 Ω were calculated from the illuminated J-V data. Dark and illuminated J-V crossover was 

observed at ~ 0.55 V which signifies the presence of a large series resistance. The cell 

performance is clearly limited by the high Rs, low Rsh, and a poor fill factor. A further analysis of 

the device microstructure provides insight into the origin of such high Rs and low Rsh as 

discussed in section 3.3. Measured photovoltaic performance parameters of all other cells on 

the same substrate (3c) are summarized in Table III. 

The dark J-V characteristic of the thin film heterojunction solar cell was fitted according to 

equation (1) considering a two-diode model and are plotted in a semi-log graph in Fig. 3 

showing each component. 
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Where,    ,     are the reverse saturation current densities and   ,    are the ideality factors of 

diode 1 and diode 2 respectively. V is the applied voltage, T is temperature in Kelvin, k is the 

Boltzmann constant, Rs and Rsh are the series and shunt resistances respectively. A value of J01 

= 1.8  10-5 A/cm2, n1 = 3.9 and J02 = 5.1  10-9 A/cm2, n2 = 2.15 were extracted from the 

experimental data fitting. 

 

 



3.3. Microstructural analysis 

The compositional analysis did not indicate the formation of any detrimental secondary phases, 

such as Cu2-xS(Se) and ZnS(Se) which are known contributors for reduced shunt-resistance and 

high series resistance respectively in CZTSSe-based devices. Therefore, we studied the device 

microstructure to investigate the origin of such high Rs and low Rsh in our cells. 

The film surface morphology was investigated by AFM and is shown in Fig. 4. The average and 

rms roughness of the surface were calculated using the following formula: 
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where   is the total number of points within the region of analysis,   is the evaluation length 

over which the analysis is performed,      is the function defining the measured surface profile, 

 ̅ is the mean surface height relative to the center plane within the analysis area, and    is the 

height of point   in the z-direction. The average and rms roughness of the film were calculated 

to be 70.8 nm and 88.4 nm respectively. An important morphological feature observed was the 

presence of micro-pores as marked by arrows in the figure. These micro-pores essentially act 

as the low resistance shunt paths and are attributed to the primary reason for low Rsh. Existence 

of such pores on CZTSSe films have been reported by other researchers [28-29]. In our solar 

cells, the micropores have formed during the sulfo-selenization process and can be attributed to 

the change of volume during the solid state reactions or during ramp down. Optimization of the 

film composition and microstructure is the key to further improve the cell efficiencies which can 

be achieved by optimization of the film growth parameters (such as temperature profile, S/Se 

vapor pressure etc.) during annealing of the precursor stacks. Also, post-growth annealing of 

the film may aid stress relief and healing of the pores. 



The cross-sectional SEM image of the completed solar cell showing the microstructure of the 

device is presented in Fig. 5. A number of notable features were observed from the SEM image. 

The CZTSSe layer showed small multiple grains in the z-direction with different grain sizes 

ranging from ~0.3-0.8 µm. Such smaller multigrain structure presents grain boundaries in the 

transverse direction to the transport path of the photogenerated carriers across the cell which 

acts as recombination center and hinders carrier transport. These phenomena are well known 

for limiting the photogenerated current and reduce fill factor in polycrystalline thin film solar cells. 

The second notable observation was the presence of micro air-voids at the back contact. This 

reduces the effective contact area leading to an increased series resistance. We believed that 

further optimization of the film growth parameters will lead to the elimination of these undesired 

air-voids. The third observation is clearly the formation of a thin (~150 nm) Mo(S,Se)y interfacial 

layer between the CZTSSe film and the Mo back contact seen as a darker contrast region. It is 

reported that such interfacial layer behave as a blocking barrier and affects charge transport. 

Control of the thickness of this Mo(S,Se)y interfacial layer is important and can be achieved by 

further optimization of process parameters during sulfo-selenization. The above observations 

explain the origin of high Rs and low FF exhibited by our fabricated solar cells. Many of the 

CZTSSe cells with comparable efficiencies reported in the literature suffer from significant 

amounts of detrimental Cu2-xS(Se), Cu2SnS(Se)3, and/or SnS(Se)2 compound formation [30-32]. 

These highly conductive secondary phases are far more detrimental to the device performance 

as it creates shunt paths throughout the device leading to a low Rsh. In our fabricated array, the 

superior cells (such as Cell 4) were free from these device killing secondary phases. We believe 

that optimization of the film growth parameters will help achieve a more uniform large-area array 

with higher cell efficiencies. 

 

 

 



4. Conclusions 

In this work, we have successfully fabricated monolithic arrays of CZTSSe solar cells using a 

vacuum-based evaporation technique. Structural, compositional, and morphological properties 

of the CZTSSe films were investigated by Raman spectroscopy, EDX, and AFM respectively. 

Photovoltaic performance and the diode characteristics of the cells were measured under AM 

1.5 illumination and under dark. Compositional analysis showed a slightly Zn-rich and Cu-poor 

stoichiometry and existence of SnS(Se)/SnS(Se)2 secondary phases. PV performance of 

kesterite-based solar cells are highly sensitive to its composition and microstructure. The high 

series resistance and poor fill factor were attributed to the presence of small multigrain structure 

of the absorber layer, micro air-voids, and a Mo(S,Se)y blocking barrier at the Mo back contact 

interface. The low shunt resistance is attributed to the micro-pores observed in the CZTSSe 

acting as low resistance shunt paths. We conclude that improvement of the microstructure by 

optimization of the fabrication process parameters is the most important aspect to enhance 

efficiency of these solar cells. Further investigations on quantitative analysis of the 

recombination loss in these devices are presently underway. 
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Table I. Summary of the precursor layer thickness and compositions for seven sets of precursor 

stacks. 

 Thickness of precursor stack layers (nm)  Precursor elemental ratios 

Stack 
ID 

          Total thickness    

       
 

  

  
 

         

      
 

2c 300 146 273 719  0.7 0.75 0.252 

3c 300 132 227 659  0.7 0.90 0.279 

8a 300 126 205 631  0.7 1.00 0.293 

3b 300 120 186 606  0.7 1.10 0.308 

5b 300 116 172 588  0.7 1.20 0.319 

2d 300 111 158 569  0.7 1.30 0.332 

4d 300 105 136 541  0.7 1.50 0.353 

 

Table II. Summary of the precursor layer thickness and compositions for seven sets of precursor 

stacks. 

Composition of CZTSSe film: Cell 4   Elemental ratios 

   

(at%) 

   

(at%) 

   

(at%) 
  

(at%) 

   

(at%) 

   

       
 

  

  
 

 

      
 

         

      
 

15.49 10.64 9.41 37.56 26.91  0.773 1.13 0.583 1.815 

 

  



 

Table III. Photovoltaic performance parameters of the fabricated solar cells calculated from the 

illuminated J-V characteristics at room temperature under AM1.5 irradiation. 

Cell 
No. 

Voc 

(mV) 

Jsc 

(mA/cm2) 

FF 

(%) 

Rs 

(Ω) 

Rsh 

(Ω) 

Pmax 

(mW) 

η 

(%) 

1 483 17.94 33.5 37.0 113.1 1.217 2.90 

2 484 19.38 32.8 36.9 113.0 1.292 3.08 

3 496 17.62 34.5 38.9 138.0 1.266 3.01 

4 506 22.92 35.0 31.1 125.2 1.705 4.06 

5 499 20.19 33.4 36.4 140.2 1.413 3.36 

6 514 17.70 33.0 45.3 162.8 1.261 3.00 

7 517 17.91 31.9 44.9 150.0 1.244 2.96 

  



 

Figure 1. (a) Raman spectra of the CZTSSe film corresponding to the cells obtained using 

precursor stack 3c, (b) reference Raman peak positions for different possible secondary phases 

and kesterite CZTSSe phase.  

  



 

 

Figure 2. .J-V characteristics of the champion cell (cell 4) under dark and under AM 1.5 

illumination. [Inset: Photograph of the solar cell array including cell 4]. 

  



 

 

Figure 3. Dark J-V characteristics of cell 4 at 300K and the two-diode model fit. 

  



 

Figure 4. AFM image of the CZTSSe absorber layer surface showing the morphological 

features. 

  



 

Figure 5. Cross-sectional SEM image of the solar cell. 
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