224 research outputs found
Atomistic mechanisms for the ordered growth of Co nano-dots on Au(788): comparison of VT-STM experiments and multi-scaled calculations
Hetero-epitaxial growth on a strain-relief vicinal patterned substrate has
revealed unprecedented 2D long range ordered growth of uniform cobalt
nanostructures. The morphology of a Co sub-monolayer deposit on a Au(111)
reconstructed vicinal surface is analyzed by Variable Temperature Scanning
Tunneling Microscopy (VT-STM) experiments. A rectangular array of nano-dots
(3.8 nm x 7.2 nm) is found for a particularly large deposit temperature range
lying from 60 K to 300 K. Although the nanodot lattice is stable at room
temperature, this paper focus on the early stage of ordered nucleation and
growth at temperatures between 35 K and 480 K. The atomistic mechanisms leading
to the nanodots array are elucidated by comparing statistical analysis of
VT-STM images with multi-scaled numerical calculations combining both Molecular
Dynamics for the quantitative determination of the activation energies for the
atomic motion and the Kinetic Monte Carlo method for the simulations of the
mesoscopic time and scale evolution of the Co submonolayer
Measuring many-body effects in carbon nanotubes with a scanning tunneling microscope
Electron-electron interactions and excitons in carbon nanotubes are locally
measured by combining Scanning tunneling spectroscopy and optical absorption in
bundles of nanotubes. The largest gap deduced from measurements at the top of
the bundle is found to be related to the intrinsic quasi-particle gap. From the
difference with optical transitions, we deduced exciton binding energies of 0.4
eV for the gap and 0.7 eV for the second Van Hove singularity. This provides
the first experimental evidence of substrate-induced gap renormalization on
SWNTs
Symmetry-selected spin-split hybrid states in C/ferromagnetic interfaces
The understanding of orbital hybridization and spin-polarization at the
organic-ferromagnetic interface is essential in the search for efficient hybrid
spintronic devices. Here, using first-principles calculations, we report a
systematic study of spin-split hybrid states of C deposited on various
ferromagnetic surfaces: bcc-Cr(001), bcc-Fe(001), bcc-Co(001), fcc-Co(001) and
hcp-Co(0001). We show that the adsorption geometry of the molecule with respect
to the surface crystallographic orientation of the magnetic substrate as well
as the strength of the interaction play an intricate role in the
spin-polarization of the hybrid orbitals. We find that a large
spin-polarization in vacuum above the buckyball can only be achieved if the
molecule is adsorbed upon a bcc-(001) surface by its pentagonal ring. Therefore
bcc-Cr(001), bcc-Fe(001) and bcc-Co(001) are the optimal candidates.
Spin-polarized scanning tunneling spectroscopy measurements on single C
adsorbed on Cr(001) and Co/Pt(111) also confirm that both the symmetry of the
substrate and of the molecular conformation have a strong influence on the
induced spin polarization. Our finding may give valuable insights for further
engineering of spin filtering devices through single molecular orbitals.Comment: 10 pages, 9 figure
Imaging the symmetry breaking of molecular orbitals in carbon nanotubes
Carbon nanotubes have attracted considerable interest for their unique
electronic properties. They are fascinating candidates for fundamental studies
of one dimensional materials as well as for future molecular electronics
applications. The molecular orbitals of nanotubes are of particular importance
as they govern the transport properties and the chemical reactivity of the
system. Here we show for the first time a complete experimental investigation
of molecular orbitals of single wall carbon nanotubes using atomically resolved
scanning tunneling spectroscopy. Local conductance measurements show
spectacular carbon-carbon bond asymmetry at the Van Hove singularities for both
semiconducting and metallic tubes, demonstrating the symmetry breaking of
molecular orbitals in nanotubes. Whatever the tube, only two types of
complementary orbitals are alternatively observed. An analytical tight-binding
model describing the interference patterns of ? orbitals confirmed by ab initio
calculations, perfectly reproduces the experimental results
Distribution of velocities in an avalanche
For a driven elastic object near depinning, we derive from first principles
the distribution of instantaneous velocities in an avalanche. We prove that
above the upper critical dimension, d >= d_uc, the n-times distribution of the
center-of-mass velocity is equivalent to the prediction from the ABBM
stochastic equation. Our method allows to compute space and time dependence
from an instanton equation. We extend the calculation beyond mean field, to
lowest order in epsilon=d_uc-d.Comment: 4 pages, 2 figure
Transfer matrix solution of the Wako-Sait\^o-Mu\~noz-Eaton model augmented by arbitrary short range interactions
The Wako-Sait{\^o}-Mu\~noz-Eaton (WSME) model, initially introduced in the
theory of protein folding, has also been used in modeling the RNA folding and
some epitaxial phenomena. The advantage of this model is that it admits exact
solution in the general inhomogeneous case (Bruscolini and Pelizzola, 2002)
which facilitates the study of realistic systems. However, a shortcoming of the
model is that it accounts only for interactions within continuous stretches of
native bonds or atomic chains while neglecting interstretch (interchain)
interactions. But due to the biopolymer (atomic chain) flexibility, the
monomers (atoms) separated by several non-native bonds along the sequence can
become closely spaced. This produces their strong interaction. The inclusion of
non-WSME interactions into the model makes the model more realistic and
improves its performance. In this study we add arbitrary interactions of finite
range and solve the new model by means of the transfer matrix technique. We can
therefore exactly account for the interactions which in proteomics are
classified as medium- and moderately long-range ones.Comment: 15 pages, 2 figure
Localized state and charge transfer in nitrogen-doped graphene
Nitrogen-doped epitaxial graphene grown on SiC(000?1) was prepared by
exposing the surface to an atomic nitrogen flux. Using Scanning Tunneling
Microscopy (STM) and Spectroscopy (STS), supported by Density Functional Theory
(DFT) calculations, the simple substitution of carbon by nitrogen atoms has
been identified as the most common doping configuration. High-resolution images
reveal a reduction of local charge density on top of the nitrogen atoms,
indicating a charge transfer to the neighboring carbon atoms. For the first
time, local STS spectra clearly evidenced the energy levels associated with the
chemical doping by nitrogen, localized in the conduction band. Various other
nitrogen-related defects have been observed. The bias dependence of their
topographic signatures demonstrates the presence of structural configurations
more complex than substitution as well as hole-doping.Comment: 5 pages, accepted in PR
Oxide nanotemplates for self-assembling "solid" building blocks
It is widely accepted that self-assembling building blocks is one of the
promising ways for engineering new materials. Recent years reveal substantial
progress in fabricating colloidal particles, polymer blocks and supramolecular
aggregates of organic molecules. Despite of substantial progress in molecular
self-assembly there is still a lack of simple blocks made of "solid matter"
(e.g. metals, oxides etc.) with well-defined crystal structure and spatial
order. Here we demonstrate that ordered arrays of metal nanoclusters can be
fabricated by self-assembly on a wide range of oxide templates. These
nano-templates are produced either by depositing an alien oxide film or by
oxidizing a metal/metal oxide substrate.Comment: 11 pages, 2 figures added DFT calculations and Fig.
- …