276 research outputs found

    TNF-Alpha in the Locomotor System beyond Joints: High Degree of Involvement in Myositis in a Rabbit Model

    Get PDF
    The importance of TNF-alpha in arthritis is well documented. It may be that TNF-alpha is also markedly involved in muscle inflammation (myositis). An animal model where this can be investigated is needed. A newly developed rabbit myositis model involving pronounced muscle overuse and local injections of substances having proinflammatory effects was therefore used in the present study. The aim was to investigate the patterns of TNF-alpha expression in the developing myositis and to evaluate the usefulness of this myositis model for further TNF-alpha research. Human rheumatoid arthritis (RA) synovial tissue was examined as a reference. TNF-alpha immunoexpression and TNF-alpha mRNA, visualized via in situ hybridization, were detected in cells in the inflammatory infiltrates of the affected muscle (soleus muscle). Coexistence of TNF-alpha and CD68 immunoreactions was noted, suggesting that the TNF-alpha reactive cells are macrophages. Expression of TNF-alpha mRNA was also noted in muscle fibers and blood vessel walls in areas with inflammation. These findings demonstrate that TNF-alpha is highly involved in the myositis process. The model can be used in further studies evaluating the importance of TNF-alpha in developing myositis

    Comprehensive Analysis of Established Dyslipidemia-Associated Loci in the Diabetes Prevention Program

    Get PDF
    Background-We assessed whether 234 established dyslipidemia-associated loci modify the effects of metformin treatment and lifestyle intervention (versus placebo control) on lipid and lipid subfraction levels in the Diabetes Prevention Program randomized controlled trial. Methods and Results-We tested gene treatment interactions in relation to baseline-adjusted follow-up blood lipid concentrations (high-density lipoprotein [HDL] and low-density lipoprotein-cholesterol, total cholesterol, and triglycerides) and lipoprotein subfraction particle concentrations and size in 2993 participants with pre-diabetes. Of the previously reported single-nucleotide polymorphism associations, 32.5% replicated at PP>1.1×10-16) with their respective baseline traits for all but 2 traits. Lifestyle modified the effect of the genetic risk score for large HDL particle numbers, such that each risk allele of the genetic risk scores was associated with lower concentrations of large HDL particles at follow-up in the lifestyle arm (β=-0.11 μmol/L per genetic risk scores risk allele; 95% confidence interval,-0.188 to-0.033; P=5×10-3; Pinteraction=1×10-3 for lifestyle versus placebo), but not in the metformin or placebo arms (P>0.05). In the lifestyle arm, participants with high genetic risk had more favorable or similar trait levels at 1-year compared with participants at lower genetic risk at baseline for 17 of the 20 traits. Conclusions-Improvements in large HDL particle concentrations conferred by lifestyle may be diminished by genetic factors. Lifestyle intervention, however, was successful in offsetting unfavorable genetic loading for most lipid traits. Clinical Trial Registration-URL: https://www.clinicaltrials.gov. Unique Identifier: NCT00004992

    A circular RNA generated from an intron of the insulin gene controls insulin secretion.

    Get PDF
    Fine-tuning of insulin release from pancreatic β-cells is essential to maintain blood glucose homeostasis. Here, we report that insulin secretion is regulated by a circular RNA containing the lariat sequence of the second intron of the insulin gene. Silencing of this intronic circular RNA in pancreatic islets leads to a decrease in the expression of key components of the secretory machinery of β-cells, resulting in impaired glucose- or KCl-induced insulin release and calcium signaling. The effect of the circular RNA is exerted at the transcriptional level and involves an interaction with the RNA-binding protein TAR DNA-binding protein 43 kDa (TDP-43). The level of this circularized intron is reduced in the islets of rodent diabetes models and of type 2 diabetic patients, possibly explaining their impaired secretory capacity. The study of this and other circular RNAs helps understanding β-cell dysfunction under diabetes conditions, and the etiology of this common metabolic disorder

    Milk intake and incident stroke and CHD in populations of European descent: a Mendelian randomisation study.

    Get PDF
    Higher milk intake has been associated with a lower stroke risk, but not with risk of CHD. Residual confounding or reverse causation cannot be excluded. Therefore, we estimated the causal association of milk consumption with stroke and CHD risk through instrumental variable (IV) and gene-outcome analyses. IV analysis included 29 328 participants (4611 stroke; 9828 CHD) of the European Prospective Investigation into Cancer and Nutrition (EPIC)-CVD (eight European countries) and European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) case-cohort studies. rs4988235, a lactase persistence (LP) SNP which enables digestion of lactose in adulthood was used as genetic instrument. Intake of milk was first regressed on rs4988235 in a linear regression model. Next, associations of genetically predicted milk consumption with stroke and CHD were estimated using Prentice-weighted Cox regression. Gene-outcome analysis included 777 024 participants (50 804 cases) from MEGASTROKE (including EPIC-CVD), UK Biobank and EPIC-NL for stroke, and 483 966 participants (61 612 cases) from CARDIoGRAM, UK Biobank, EPIC-CVD and EPIC-NL for CHD. In IV analyses, each additional LP allele was associated with a higher intake of milk in EPIC-CVD (β = 13·7 g/d; 95 % CI 8·4, 19·1) and EPIC-NL (36·8 g/d; 95 % CI 20·0, 53·5). Genetically predicted milk intake was not associated with stroke (HR per 25 g/d 1·05; 95 % CI 0·94, 1·16) or CHD (1·02; 95 % CI 0·96, 1·08). In gene-outcome analyses, there was no association of rs4988235 with risk of stroke (OR 1·02; 95 % CI 0·99, 1·05) or CHD (OR 0·99; 95 % CI 0·95, 1·03). Current Mendelian randomisation analysis does not provide evidence for a causal inverse relationship between milk consumption and stroke or CHD risk

    γ-Aminobutyric acid (GABA) signalling in human pancreatic islets is altered in type 2 diabetes

    Get PDF
    AIMS/HYPOTHESIS: γ-Aminobutyric acid (GABA) is a signalling molecule in the interstitial space in pancreatic islets. We examined the expression and function of the GABA signalling system components in human pancreatic islets from normoglycaemic and type 2 diabetic individuals. METHODS: Expression of GABA signalling system components was studied by microarray, quantitative PCR analysis, immunohistochemistry and patch-clamp experiments on cells in intact islets. Hormone release was measured from intact islets. RESULTS: The GABA signalling system was compromised in islets from type 2 diabetic individuals, where the expression of the genes encoding the α1, α2, β2 and β3 GABA(A) channel subunits was downregulated. GABA originating within the islets evoked tonic currents in the cells. The currents were enhanced by pentobarbital and inhibited by the GABA(A) receptor antagonist, SR95531. The effects of SR95531 on hormone release revealed that activation of GABA(A) channels (GABA(A) receptors) decreased both insulin and glucagon secretion. The GABA(B) receptor antagonist, CPG55845, increased insulin release in islets (16.7 mmol/l glucose) from normoglycaemic and type 2 diabetic individuals. CONCLUSIONS/INTERPRETATION: Interstitial GABA activates GABA(A) channels and GABA(B) receptors and effectively modulates hormone release in islets from type 2 diabetic and normoglycaemic individuals

    Structural basis for delta cell paracrine regulation in pancreatic islets

    Get PDF
    International audienceLittle is known about the role of islet delta cells in regulating blood glucose homeostasis in vivo. Delta cells are important paracrine regulators of beta cell and alpha cell secretory activity, however the structural basis underlying this regulation has yet to be determined. Most delta cells are elongated and have a well-defined cell soma and a filopodia-like structure. Using in vivo optogenetics and high-speed Ca2+ imaging, we show that these filopodia are dynamic structures that contain a secretory machinery, enabling the delta cell to reach a large number of beta cells within the islet. This provides for efficient regulation of beta cell activity and is modulated by endogenous IGF-1/VEGF-A signaling. In pre-diabetes, delta cells undergo morphological changes that may be a compensation to maintain paracrine regulation of the beta cell. Our data provides an integrated picture of how delta cells can modulate beta cell activity under physiological conditions

    Gene × Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry

    Get PDF
    Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested whether the aggregate effect of these loci is diminished in adults of European ancestry reporting high levels of physical activity. Twelve obesity-susceptibility loci were genotyped or imputed in 111,421 participants. A genetic risk score (GRS) was calculated by summing the BMI-associated alleles of each genetic variant. Physical activity was assessed using self-administered questionnaires. Multiplicative interactions between the GRS and physical activity on BMI were tested in linear and logistic regression models in each cohort, with adjustment for age, age2, sex, study center (for multicenter studies), and the marginal terms for physical activity and the GRS. These results were combined using meta-analysis weighted by cohort sample size. The meta-analysis yielded a statistically significant GRS × physical activity interaction effect estimate (Pinteraction = 0.015). However, a statistically significant interaction effect was only apparent in North American cohorts (n = 39,810, Pinteraction = 0.014 vs. n = 71,611, Pinteraction = 0.275 for Europeans). In secondary analyses, both the FTO rs1121980 (Pinteraction = 0.003) and the SEC16B rs10913469 (Pinteraction = 0.025) variants showed evidence of SNP × physical activity interactions. This meta-analysis of 111,421 individuals provides further support for an interaction between physical activity and a GRS in obesity disposition, although these findings hinge on the inclusion of cohorts from North America, indicating that these results are either population-specific or non-causal

    The Adult Human Brain Harbors Multipotent Perivascular Mesenchymal Stem Cells

    Get PDF
    Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain
    corecore