41 research outputs found

    Reduction of the HIV Protease Inhibitor-Induced ER Stress and Inflammatory Response by Raltegravir in Macrophages

    Get PDF
    Background HIV protease inhibitor (PI), the core component of highly active antiretroviral treatment (HAART) for HIV infection, has been implicated in HAART-associated cardiovascular complications. Our previous studies have demonstrated that activation of endoplasmic reticulum (ER) stress is linked to HIV PI-induced inflammation and foam cell formation in macrophages. Raltegravir is a first-in-its-class HIV integrase inhibitor, the newest class of anti-HIV agents. We have recently reported that raltegravir has less hepatic toxicity and could prevent HIV PI-induced dysregulation of hepatic lipid metabolism by inhibiting ER stress. However, little information is available as to whether raltegravir would also prevent HIV PI-induced inflammatory response and foam cell formation in macrophages. Methodology and Principal Findings In this study, we examined the effect of raltegravir on ER stress activation and lipid accumulation in cultured mouse macrophages (J774A.1), primary mouse macrophages, and human THP-1-derived macrophages, and further determined whether the combination of raltegravir with existing HIV PIs would potentially exacerbate or prevent the previously observed activation of inflammatory response and foam cell formation. The results indicated that raltegravir did not induce ER stress and inflammatory response in macrophages. Even more interestingly, HIV PI-induced ER stress, oxidative stress, inflammatory response and foam cell formation were significantly reduced by raltegravir. High performance liquid chromatography (HPLC) analysis further demonstrated that raltegravir did not affect the uptake of HIV PIs in macrophages. Conclusion and Significance Raltegravir could prevent HIV PI-induced inflammatory response and foam cell formation by inhibiting ER stress. These results suggest that incorporation of this HIV integrase inhibitor may reduce the cardiovascular complications associated with current HAART

    Superbroad near-to-mid-infrared luminescence from Bi5 3+ in Bi5(AlCl4)3

    No full text
    Superbroad near-to-mid infrared (NIR-MIR) photoluminescence was observed from Bi5(AlCl4)3 at room temperature, spanning the spectral range of about 1000 to 4000 nm. On the basis of structural considerations and dynamic analyses, Bi53+ clusters were identified as the optically active species, inherently differing from the species which is typically believed to be active in NIR-emitting Bi-doped glasses. In comparison to most other NIR-luminescent Bi-doped materials, the MIR-part of the luminescence spectrum is still present at room temperature. Emission intensity and excited state lifetime were found to exhibit abnormal temperature dependence, where the former increases with temperature up to a critical value of about 150 K. This behavior is related to a temperature-dependent overlap between ground state and excited states. The observed stabilization of MIR photoemission at room temperature may be a starting point for the development of Bi-based NIR-MIR light sources with superbroad emission spectrum, where Bi53+ or similar polycationic species act as optical gain medium

    Synthesis, optical properties, and energy transfer of Ce 3+/Tb3+ co-doped MyGdFx (M = Li, Na, K)

    No full text
    Through a solid-state reaction method, the Ce3+/Tb3+ co-doped MyGdFx (M = Li, Na, K; x = 3, 4, 6; y = 0, 1, 3) system samples have been synthesized by controlling the annealing temperatures and the ratios of raw materials. The samples were characterized by X-ray diffraction (XRD) patterns, photoluminescence (PL) excitation and emission spectra as well as luminescent dynamic decay curves. The experimental results suggest that the LiF is more difficult to react with the prepared material compared that of NaF or KF under similar reaction conditions. The samples crystallized in different crystalline phases. The energy transfer from Ce 3+ to Tb3+ or Ce3+ to Gd3+ to Tb3+ has been observed in all the samples. The Ce3+ and Tb3+ present different optical properties for they are sensitive to the local environment. In addition, the deduced lifetime of Tb3+ 5D4 → 7F5 transition decreases in the same system samples with the annealing temperature increasing. The deduced lifetime of Tb3+ 5D4 → 7F5 also decreases with the increase of the KF concentration in the KF system samples. ? 2014 Elsevier B.V. All rights reserved
    corecore