9 research outputs found

    One fungus, which genes?: development and assessment of universal primers for potential secondary fungal DNA barcodes

    Get PDF
    The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode. Amplification efficiencies of 14 (partially) universal primer pairs targeting eight genetic markers were tested across > 1 500 species (1 931 strains or specimens) and the outcomes of almost twenty thousand (19 577) polymerase chain reactions were evaluated. We tested several well-known primer pairs that amplify: i) sections of the nuclear ribosomal RNA gene large subunit (D1-D2 domains of 26/28S); ii) the complete internal transcribed spacer region (ITS1/2); iii) partial beta-tubulin II (TUB2); iv) gamma-actin (ACT); v) translation elongation factor 1-alpha (TEF1 alpha); and vi) the second largest subunit of RNA-polymerase II (partial RPB2, section 5-6). Their PCR efficiencies were compared with novel candidate primers corresponding to: i) the fungal-specific translation elongation factor 3 (TEF3); ii) a small ribosomal protein necessary for t-RNA docking; iii) the 60S L10 (L1) RP; iv) DNA topoisomerase I (TOPI); v) phosphoglycerate kinase (PGK); vi) hypothetical protein LNS2; and vii) alternative sections of TEF1 alpha. Results showed that several gene sections are accessible to universal primers (or primers universal for phyla) yielding a single PCR-product. Barcode gap and multi-dimensional scaling analyses revealed that some of the tested candidate markers have universal properties providing adequate infra- and inter-specific variation that make them attractive barcodes for species identification. Among these gene sections, a novel high fidelity primer pair for TEF1 alpha, already widely used as a phylogenetic marker in mycology, has potential as a supplementary DNA barcode with superior resolution to ITS. Both TOPI and PGK show promise for the Ascomycota, while TOPI and LNS2 are attractive for the Pucciniomycotina, for which universal primers for ribosomal subunits often fail

    RUBY-1: a randomized, double-blind, placebo-controlled trial of the safety and tolerability of the novel oral factor Xa inhibitor darexaban (YM150) following acute coronary syndrome

    Get PDF
    AIMS: To establish the safety, tolerability and most promising regimen of darexaban (YM150), a novel, oral, direct factor Xa inhibitor, for prevention of ischaemic events in acute coronary syndrome (ACS). METHODS: In a 26-week, multi-centre, double-blind, randomized, parallel-group study, 1279 patients with recent high-risk non-ST-segment or ST-segment elevation ACS received one of six darexaban regimens: 5 mg b.i.d., 10 mg o.d., 15 mg b.i.d., 30 mg o.d., 30 mg b.i.d., or 60 mg o.d. or placebo, on top of dual antiplatelet treatment. Primary outcome was incidence of major or clinically relevant non-major bleeding events. The main efficacy outcome was a composite of death, stroke, myocardial infarction, systemic thromboembolism, and severe recurrent ischaemia. RESULTS: Bleeding rates were numerically higher in all darexaban arms vs. placebo (pooled HR: 2.275; 95% CI: 1.13–4.60, P = 0.022). Using placebo as reference (bleeding rate 3.1%), there was a dose–response relationship (P = 0.009) for increased bleeding with increasing darexaban dose (6.2, 6.5, and 9.3% for 10, 30, and 60 mg daily, respectively), which was statistically significant for 30 mg b.i.d. (P = 0.002). There was no decrease (indeed a numerical increase in the 30 and 60 mg dose arms) in efficacy event rates with darexaban, but the study was underpowered for efficacy. Darexaban showed good tolerability without signs of liver toxicity. CONCLUSIONS: Darexaban when added to dual antiplatelet therapy after ACS produces an expected dose-related two- to four-fold increase in bleeding, with no other safety concerns but no signal of efficacy. Establishing the potential of low-dose darexaban in preventing major cardiac events after ACS requires a large phase III trial. ClinicalTrials.gov Identifier: NCT0099429

    Measurement of parameters of cholic acid kinetics in plasma using a microscale stable isotope dilution technique:application to rodents and humans

    No full text
    A stable isotope dilution method is described that allows measurement of cholic acid (CA) kinetics, that is, pool size, fractional turnover rate (FTR), and synthesis rate in trace, rats, and humans. Decay of administered [2,2,4,4-H-2(4)]CA enrichment was measured in time in 50-mul plasma samples by gas-liquid chromatography/electron capture negative chemical ionization-mass spectrometry, applying the pentafluorobenzyl-trimethylsilyl derivative. The kinetic data expressed species-dependent differences. The CA pool sizes were 16.8 +/- 2.1, 10.6 +/- 1.2, and 2.4 +/- 0.7 mu mol/ 100 g body weight for mice, rats, and humans, respectively. The FTR values were 0.44 +/- 0.03, 0.88 +/- 0.10, and 0.46 +/- 0.14 per day for mice, rats, and humans. The corresponding synthesis rates were 7.3 +/- 1.6, 9.3 +/- 0.1, and 1.0 +/- 0.2 mu mol/100 g body weight per day. The human data agreed well with literature data obtained by conventional isotope dilution techniques. For rats and mice these are the first reported isotope dilution data. The method was validated by confirmation of isotopic equilibrium between biliary CA and plasma CA in the rat. Its applicability was demonstrated by the observation of increased CA FTR and CA synthesis rate in rats fed cholestyramine, which is known to increase fecal bile acid excretion. The presented stable isotope dilution method enables the determination of CA kinetic parameters in small plasma samples. The method can be applied in unanesthetized rodents with an intact enterohepatic circulation and may also be valuable when studying the development of human neonatal bile acid kinetics

    One fungus, which genes? : development and assessment of universal primers for potential secondary fungal DNA barcodes

    No full text
    The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode. Amplification efficiencies of 14 (partially) universal primer pairs targeting eight genetic markers were tested across > 1 500 species (1 931 strains or specimens) and the outcomes of almost twenty thousand (19 577) polymerase chain reactions were evaluated. We tested several well-known primer pairs that amplify: i) sections of the nuclear ribosomal RNA gene large subunit (D1–D2 domains of 26/28S); ii) the complete internal transcribed spacer region (ITS1/2); iii) partial β-tubulin II (TUB2); iv) γ-actin (ACT); v) translation elongation factor 1-α (TEF1α); and vi) the second largest subunit of RNA-polymerase II (partial RPB2, section 5–6). Their PCR efficiencies were compared with novel candidate primers corresponding to: i) the fungal-specific translation elongation factor 3 (TEF3); ii) a small ribosomal protein necessary for t-RNA docking; iii) the 60S L10 (L1) RP; iv) DNA topoisomerase I (TOPI); v) phosphoglycerate kinase (PGK); vi) hypothetical protein LNS2; and vii) alternative sections of TEF1α. Results showed that several gene sections are accessible to universal primers (or primers universal for phyla) yielding a single PCR-product. Barcode gap and multi-dimensional scaling analyses revealed that some of the tested candidate markers have universal properties providing adequate infra- and inter-specific variation that make them attractive barcodes for species identification. Among these gene sections, a novel high fidelity primer pair for TEF1α, already widely used as a phylogenetic marker in mycology, has potential as a supplementary DNA barcode with superior resolution to ITS. Both TOPI and PGK show promise for the Ascomycota, while TOPI and LNS2 are attractive for the Pucciniomycotina, for which universal primers for ribosomal subunits often fail
    corecore