1,140 research outputs found

    Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus

    Get PDF
    Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences.Fil: Zhao Xiang, Fang. University of Science and Technology of China; ChinaFil: Yu Xuan, Ren. Shanghai Institutes for Biological Sciences; ChinaFil: Gong, Lei. University of Science and Technology of China; ChinaFil: Vaveliuk, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigaciones Opticas (i); Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Chen, Yue. University of Science and Technology of China; ChinaFil: Rong De, Lu. University of Science and Technology of China; Chin

    Fermions Tunneling from Apparent Horizon of FRW Universe

    Full text link
    In the paper [arXiv:0809.1554], the scalar particles' Hawking radiation from the apparent horizon of Friedmann-Robertson-Walker(FRW) universe was investigated by using the tunneling formalism. They obtained the Hawking temperature associated with the apparent horizon, which was extensively applied in investigating the relationship between the first law of thermodynamics and Friedmann equations. In this paper, we calculate Fermions' Hawking radiation from the apparent horizon of FRW universe via tunneling formalism. Applying WKB approximation to the general covariant Dirac equation in FRW spacetime background, the radiation spectrum and Hawking temperature of apparent horizon are correctly recovered, which supports the arguments presented in the paper [arXiv:0809.1554].Comment: 8 pages, no figure

    Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus

    Get PDF
    Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences.Centro de Investigaciones Óptica

    Influence of Generalized and Extended Uncertainty Principle on Thermodynamics of FRW universe

    Full text link
    The influence of the generalized uncertainty principle (GUP) and extended uncertainty principle (EUP) on the thermodynamics of the Friedmann-Robertson-Walker (FRW) universe has been investigated. It is shown that the entropy of the apparent horizon of the FRW universe gets a correction if one considers the effect of the GUP or EUP. Moreover, starting with the modified entropy and applying the first law of thermodynamics, dE=TdSdE=TdS, to the apparent horizon of the FRW universe, we obtain the modified Friedmann equations. The influence of the GUP or EUP on the thermodynamics of the FRW universe provides a deep insight into the understanding of the quantum gravity or large length scale corrections to the dynamics of the FRW universe.Comment: 7 papges, no figure, comments are welcome! v2:Typos corrected, some references added; v3:typoes corrected, more references added, final version to appear in Phys. Lett.

    Cyanobacterial fossils from 252 Ma old microbialites and their environmental significance

    Get PDF
    The end-Permian mass extinction was followed by the formation of an enigmatic rock layer with a distinctive macroscopic spotted or dendroid fabric. This deposit has been interpreted as microbial reef rock, digitate dendrolite, digital thrombolite, dendritic thrombolite, or bacterial deposits. Agreement has been reached in considering them as microbialites, but not in their formation. This study has revealed that the spotted and dendroid microbialites were composed of numerous fossil casts formed by the planktic cyanobacterium, Microcystis, a coccoid genus that at the present-day commonly forms blooms in modern lakes, rivers, and reservoirs. The abundance of the fossils and the diagenesis they experienced has determined the macroscopic fabric: where they abundant, the rock appears as dendroid, otherwise, it appears as spotted. The ancient Microcystis bloom might produce toxin to kill other metazoans, and be responsible for the oceanic anoxia that has puzzled so many researchers for so many years.The end-Permian mass extinction was followed by the formation of an enigmatic rock layer with a distinctive macroscopic spotted or dendroid fabric. This deposit has been interpreted as microbial reef rock, digitate dendrolite, digital thrombolite, dendritic thrombolite, or bacterial deposits. Agreement has been reached in considering them as microbialites, but not in their formation. This study has revealed that the spotted and dendroid microbialites were composed of numerous fossil casts formed by the planktic cyanobacterium, Microcystis, a coccoid genus that at the present-day commonly forms blooms in modern lakes, rivers, and reservoirs. The abundance of the fossils and the diagenesis they experienced has determined the macroscopic fabric: where they abundant, the rock appears as dendroid, otherwise, it appears as spotted. The ancient Microcystis bloom might produce toxin to kill other metazoans, and be responsible for the oceanic anoxia that has puzzled so many researchers for so many years

    The prognostic and immunological role of MCM3 in pan-cancer and validation of prognosis in a clinical lower-grade glioma cohort

    Get PDF
    Background: Previous studies have shown that MCM3 plays a key role in initiating DNA replication. However, the mechanism of MCM3 function in most cancers is still unknown. The aim of our study was to explore the expression, prognostic role, and immunological characteristics of MCM3 across cancers.Methods: We explored the expression pattern of MCM3 across cancers. We subsequently explored the prognostic value of MCM3 expression by using univariate Cox regression analysis. Spearman correlation analysis was performed to determine the correlations between MCM3 and immune-related characteristics, mismatching repair (MMR) signatures, RNA modulator genes, cancer stemness, programmed cell death (PCD) gene expression, tumour mutation burden (TMB), microsatellite instability (MSI), and neoantigen levels. The role of MCM3 in predicting the response to immune checkpoint blockade (ICB) therapy was further evaluated in four immunotherapy cohorts. Single-cell data from CancerSEA were analysed to assess the biological functions associated with MCM3 in 14 cancers. The clinical correlation and independent prognostic significance of MCM3 were further analysed in the TCGA and CGGA lower-grade glioma (LGG) cohorts, and a prognostic nomogram was constructed. Immunohistochemistry in a clinical cohort was utilized to validate the prognostic utility of MCM3 expression in LGG.Results: MCM3 expression was upregulated in most tumours and strongly associated with patient outcomes in many cancers. Correlation analyses demonstrated that MCM3 expression was closely linked to immune cell infiltration, immune checkpoints, MMR genes, RNA modulator genes, cancer stemness, PCD genes and the TMB in most tumours. There was an obvious difference in outcomes between patients with high MCM3 expression and those with low MCM3 expression in the 4 ICB treatment cohorts. Single-cell analysis indicated that MCM3 was mainly linked to the cell cycle, DNA damage and DNA repair. The expression of MCM3 was associated with the clinical features of LGG patients and was an independent prognostic indicator. Finally, the prognostic significance of MCM3 in LGG was validated in a clinical cohort.Conclusion: Our study suggested that MCM3 can be used as a potential prognostic marker for cancers and may be associated with tumour immunity. In addition, MCM3 is a promising predictor of immunotherapy responses

    Biomarkers for Early Diagnostic of Mild Cognitive Impairment in Type-2 Diabetes Patients: A Multicentre, Retrospective, Nested Case–Control Study

    Get PDF
    AbstractBackgroundBoth type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are common age-associated disorders and T2DM patients show an increased risk to suffer from AD, however, there is currently no marker to identify who in T2DM populations will develop AD. Since glycogen synthase kinase-3β (GSK-3β) activity, ApoE genotypes and olfactory function are involved in both T2DM and AD pathogenesis, we investigate whether alterations of these factors can identify cognitive impairment in T2DM patients.MethodsThe cognitive ability was evaluated using Minimum Mental State Examination (MMSE) and Clinical Dementia Rating (CDR), and the mild cognitive impairment (MCI) was diagnosed by Petersen's criteria. GSK-3β activity in platelet, ApoE genotypes in leucocytes and the olfactory function were detected by Western/dot blotting, the amplification refractory mutation system (ARMS) PCR and the Connecticut Chemosensory Clinical Research Center (CCCRC) test, respectively. The odds ratio (OR) and 95% confidence intervals (95% CI) of the biomarkers for MCI diagnosis were calculated by logistic regression. The diagnostic capability of the biomarkers was evaluated by receiver operating characteristics (ROC) analyses.FindingsWe recruited 694 T2DM patients from Jan. 2012 to May. 2015 in 5 hospitals (Wuhan), and 646 of them met the inclusion criteria and were included in this study. 345 patients in 2 hospitals were assigned to the training set, and 301 patients in another 3 hospitals assigned to the validation set. Patients in each set were randomly divided into two groups: T2DM without MCI (termed T2DM-nMCI) or with MCI (termed T2DM-MCI). There were no significant differences for sex, T2DM years, hypertension, hyperlipidemia, coronary disease, complications, insulin treatment, HbA1c, ApoE ε2, ApoE ε3, tGSK3β and pS9GSK3β between the two groups. Compared with the T2DM-nMCI group, T2DM-MCI group showed lower MMSE score with older age, ApoE ε4 allele, higher olfactory score and higher rGSK-3β (ratio of total GSK-3β to Ser9-phosphorylated GSK-3β) in the training set and the validation set. The OR values of age, ApoE ε4 gene, olfactory score and rGSK-3β were 1.09, 2.09, 1.51, 10.08 in the training set, and 1.06, 2.67, 1.47, 7.19 in the validation set, respectively. The diagnostic accuracy of age, ApoE ε4 gene, olfactory score and rGSK-3β were 0.76, 0.72, 0.66, 0.79 in the training set, and 0.70, 0.68, 0.73, 0.79 in the validation set, respectively. These four combined biomarkers had the area under the curve (AUC) of 82% and 86%, diagnostic accuracy of 83% and 81% in the training set and the validation set, respectively.InterpretationAging, activation of peripheral circulating GSK-3β, expression of ApoE ε4 and increase of olfactory score are diagnostic for the mild cognitive impairment in T2DM patients, and combination of these biomarkers can improve the diagnostic accuracy

    Corrections to Hawking-like Radiation for a Friedmann-Robertson-Walker Universe

    Full text link
    Recently, a Hamilton-Jacobi method beyond semiclassical approximation in black hole physics was developed by \emph{Banerjee} and \emph{Majhi}\cite{beyond0}. In this paper, we generalize their analysis of black holes to the case of Friedmann-Robertson-Walker (FRW) universe. It is shown that all the higher order quantum corrections in the single particle action are proportional to the usual semiclassical contribution. The corrections to the Hawking-like temperature and entropy of apparent horizon for FRW universe are also obtained. In the corrected entropy, the area law involves logarithmic area correction together with the standard inverse power of area term.Comment: 10 pages, no figures, comments are welcome; v2: references added and some typoes corrected, to appear in Euro.Phys.J.C; v3:a defect corrected. We thank Dr.Elias Vagenas for pointing out a defect of our pape
    corecore