909 research outputs found

    Physio-chemical and antibacterial characteristics of pressure spun nylon nanofibres embedded with functional silver nanoparticles

    Get PDF
    © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Date of Acceptance: 05/06/2015A novel and facile approach to prepare hybrid nanoparticle embedded polymer nanofibers using pressurised gyration is presented. Silver nanoparticles and nylon polymer were used in this work. The polymer solution's physical properties, rotating speed and the working pressure had a significant influence on the fibre diameter and the morphology. Fibres in the range of 60–500 nm were spun using 10 wt.%, 15 wt.% and 20 wt.% nylon solutions and these bead-free fibres were processed under 0.2 MPa and 0.3 MPa working pressure and a rotational speed of 36,000 rpm. 1–4 wt.% of Ag was added to these nylon solutions and in the case of wt.% fibres in the range 50–150 nm were prepared using the same conditions of pressurised gyration. Successful incorporation of the Ag nanoparticles in nylon nanofibres was confirmed by using a combination of advanced microscopical techniques and Raman spectrometry was used to study the bonding characteristics of nylon and the Ag nanoparticles. Inductively coupled plasma mass spectroscopy showed a substantial concentration of Ag ions in the nylon fibre matrix which is essential for producing effective antibacterial properties. Antibacterial activity of the Ag-loaded nanofibres shows higher efficacy than nylon nanofibres for Gram-negative Escherichia coli and Pseudomonas aeruginosa microorganisms, and both Ag nanoparticles and the Ag ions were found to be the reason for enhanced cell death in the bacterial solutionPeer reviewe

    Possible mechanism of efferent arteriole (Ef-Art) tubuloglomerular feedback

    Get PDF
    Adenosine triphosphate (ATP) is liberated from macula densa cells in response to increased tubular NaCl delivery. However, it is not known whether ATP from the macula densa is broken down to adenosine, or whether this adenosine mediates efferent arteriole (Ef-Art) tubuloglomerular feedback (TGF). We hypothesized that increased macula densa Ca2+, release of ATP and degradation of ATP to adenosine are necessary for Ef-Art TGF. Rabbit Ef-Arts and adherent tubular segments (with the macula densa) were simultaneously microperfused in vitro while changing the NaCl concentration at the macula densa. The Ef-Art was perfused orthograde through the end of the afferent arteriole (Af-Art). In Ef-Arts preconstricted with norepinephrine (NE), increasing NaCl concentration from 10 to 80mM at the macula densa dilated Ef-Arts from 7.5±0.7 to 11.1±0.3μm. Buffering increases in macula densa Ca2+ with the cell-permeant Ca2+ chelator BAPTA-AM diminished Ef-Art TGF from 3.1±0.3 to 0.1±0.2μm. Blocking adenosine formation by adding α-β-methyleneadenosine 5′-diphosphate (MADP) blocked Ef-Art TGF from 2.9±0.5 to 0.1±0.2μm. Increasing luminal NaCl at the macula densa from 10 to 45mM caused a moderate Ef-Art TGF response, 1.3±0.1μm. It was potentiated to 4.0±0.3μm by adding hexokinase, which enhances conversion of ATP into adenosine. Our data show that in vitro changes in macula densa Ca2+ and ATP release are necessary for Ef-Art TGF. ATP is broken down to form adenosine, which mediates signal transmission of Ef-Art TGF

    Multiple superconducting gap and anisotropic spin fluctuations in iron arsenides: Comparison with nickel analog

    Full text link
    We present extensive 75As NMR and NQR data on the superconducting arsenides PrFeAs0.89F0.11 (Tc=45 K), LaFeAsO0.92F0.08 (Tc=27 K), LiFeAs (Tc = 17 K) and Ba0.72K0.28Fe2As2 (Tc = 31.5 K) single crystal, and compare with the nickel analog LaNiAsO0.9F0.1 (Tc=4.0 K) . In contrast to LaNiAsO0.9F0.1 where the superconducting gap is shown to be isotropic, the spin lattice relaxation rate 1/T1 in the Fe-arsenides decreases below Tc with no coherence peak and shows a step-wise variation at low temperatures. The Knight shift decreases below Tc and shows a step-wise T variation as well. These results indicate spinsinglet superconductivity with multiple gaps in the Fe-arsenides. The Fe antiferromagnetic spin fluctuations are anisotropic and weaker compared to underdoped copper-oxides or cobalt-oxide superconductors, while there is no significant electron correlations in LaNiAsO0.9F0.1. We will discuss the implications of these results and highlight the importance of the Fermi surface topology.Comment: 6 pages, 11 figure

    Thermodynamics of a one-dimensional S=1/2 spin-orbital model

    Full text link
    The thermodynamic properties of a one-dimensional model describing spin dynamics in the presence of a twofold orbital degeneracy are studied numerically using the transfer-matrix renormalization group (TMRG). The model contains an integrable SU(4)-symmetric point and a gapless phase which is SU(4) invariant up to a rescaling of the velocities for spin and orbital degrees of freedom which allows detailed comparison of the numerical results with conformal field theory. We pay special attention to the correlation lengths which show an intriguing evolution with temperature. We find that the model shows an intrinsic tendency towards dimerization at finite temperature even if the ground state is not dimerized.Comment: 9 pages, 12 figure

    R-parity violation effect on the top-quark pair production at linear colliders

    Full text link
    We investigate in detail the effects of the R-parity lepton number violation in the minimal supersymmetric standard model (MSSM) on the top-quark pair production via both ee+e^--e^+ and γγ\gamma-\gamma collision modes at the linear colliders. We find that with the present experimental constrained /R\rlap/{R} parameters, the effect from /R\rlap/{R} interactions on the processes e+ettˉe^+e^-\to t\bar{t} and e+eγγttˉe^+e^- \to \gamma\gamma \to t\bar{t} could be significant and may reach -30% and several percent, respectively. Our results show that the /R\rlap/{R} effects are sensitive to the c.m.s. energy and the relevant /R\rlap/{R} parameters. However, they are not sensitive to squark and slepton masses when mq~400GeVm_{\tilde{q}} \geq 400 GeV (or ml~300GeVm_{\tilde{l}} \geq 300 GeV) and are almost independent on the tanβ\tan\betaComment: Accepted by Phys.Rev.

    Effects of Allelic Variation in Glutenin Subunits and Gliadins on Baking-Quality in Near-isogenic Lines of Common Wheat cv. Longmai 19

    Get PDF
    Two lines, L-19-613 and L-19-626, were produced from the common wheat cultivar Longmai 19 (L-19) by six consecutive backcrosses using biochemical marker-assisted selection. L-19 (Glu-D1a, Glu-A3c/Gli-A1?; Gli-A1? is a gene coding for unnamed gliadin) and L-19-613 (Glu-D1d, Glu-A3c/Gli-A1?) formed a set of near-isogenic lines (NILs) for HMW-GS, while L-19-613 and L-19-626 (Glu-D1d, Glu-A3e/Gli-A1m) constituted another set of NILs for the LMW-GS/gliadins. The three L-19 NILs were grown in the wheat breeding nursery in 2007 and 2008. The field experiments were designed using the three-column contrast arrangement method with four replicates. The three lines were ranked as follows for measurements of gluten strength, which was determined by the gluten index, Zeleny sedimentation, the stability and breakdown time of the farinogram, the maximum resistance and area of the extensogram, and the P andWvalues of the alveogram: L-19-613 > L-19-626 > L-19. The parameters listed above were significantly different between lines at the 0.05 or 0.01 level. The Glu-D1 and Glu-A3/Gli-A1 loci had additive effects on the gluten index, Zeleny sedimentation, stability, breakdown time, maximum resistance, area, P and W values. Although genetic variation at the Glu-A3/Gli-A1 locus had a great influence on wheat quality, the genetic difference between Glu-D1d and Glu-D1a at the Glu-D1 locus was much larger than that of Glu-A3c/Gli-A1? and Glu-A3e/Gli-A1m at the Glu-A3/Gli-A1 locus. Glu-D1d had negative effects on the extensibility and the L value compared with Glu-D1a. In contrast, Glu-A3c/Gli-A1? had a positive effect on these traits compared with Glu-A3e/Gli-A1m

    Magnetocaloric effect and magnetostructural coupling in Mn0.92Fe0.08CoGe compound

    Get PDF
    The structural properties of Mn0.92Fe0.08CoGe have been investigated in detail using synchrotron x-ray diffraction in zero and applied pressure (p = 0-10 GPa). A ferromagnetic transition occurs around TC = 300 K and a large magnetic-entropy change -ΔSM = 17.3 J/kg K detected at TC for a field change of ΔB = 5 T. The field dependence of -ΔSM max can be expressed as -ΔSM max ∞ B. At ambient temperature and pressure, Mn0.92Fe0.08CoGe exhibits a co-existence of the orthorhombic TiNiSi-type structure (space group Pnma) and hexagonal Ni2In-type structure (space group P63/mmc). Application of external pressure drives a structure change from the orthorhombic TiNiSi-type structure to the hexagonal Ni2In-type structure. A large anomaly in heat capacity around TC is detected and the Debye temperature θD (=319(±10) K) has been derived from analyses of the low temperature heat capacity, T ≲ 10 K

    Ultrafast photoinduced reflectivity transients in (Nd0.5Sr0.5)MnO3(Nd_{0.5}Sr_{0.5})MnO_3

    Full text link
    The temperature dependence of ultrafast photoinduced reflectivity transients is reported in Nd0.5_{0.5}Sr0.5_{0.5}MnO3_{3} thin film. The photoinduced reflectivity shows a complex response with very different temperature dependences on different timescales. The response on the sub-ps timescale appears to be only weakly sensitive to the 270K-metal-insulator phase transition. Below 160\sim 160 K the sub-ps response displays a two component behavior indicating inhomogeneity of the film resulting from the substrate induced strain. On the other hand, the slower response on the 10-100 ps timescale is sensitive only to the metal-insulator phase transition and is in agreement with some previously published results. The difference in the temperature dependences of the responses on nanosecond and μ\mu s timescales indicates that thermal equilibrium between the different degrees of fredom is established relatively slowly - on a nanosecond timescale

    Gauge equivalence in QCD: the Weyl and Coulomb gauges

    Full text link
    The Weyl-gauge (A0a=0)A_0^a=0) QCD Hamiltonian is unitarily transformed to a representation in which it is expressed entirely in terms of gauge-invariant quark and gluon fields. In a subspace of gauge-invariant states we have constructed that implement the non-Abelian Gauss's law, this unitarily transformed Weyl-gauge Hamiltonian can be further transformed and, under appropriate circumstances, can be identified with the QCD Hamiltonian in the Coulomb gauge. We demonstrate an isomorphism that materially facilitates the application of this Hamiltonian to a variety of physical processes, including the evaluation of SS-matrix elements. This isomorphism relates the gauge-invariant representation of the Hamiltonian and the required set of gauge-invariant states to a Hamiltonian of the same functional form but dependent on ordinary unconstrained Weyl-gauge fields operating within a space of ``standard'' perturbative states. The fact that the gauge-invariant chromoelectric field is not hermitian has important implications for the functional form of the Hamiltonian finally obtained. When this nonhermiticity is taken into account, the ``extra'' vertices in Christ and Lee's Coulomb-gauge Hamiltonian are natural outgrowths of the formalism. When this nonhermiticity is neglected, the Hamiltonian used in the earlier work of Gribov and others results.Comment: 25 page

    Angular momentum projected analysis of Quadrupole Collectivity in \protect(^{30,32,34}Mg\protect) and \protect(^{32,34,36,38}Si\protect) with the Gogny interaction

    Full text link
    A microscopic angular momentum projection after variation is used to describe quadrupole collectivity in (^{30,32,34}Mg) and (^{32,34,36,38}Si). The Hartree-Fock-Bogoliubov states obtained in the quadrupole constrained mean field approach are taken as intrinsic states for the projection. Excitation energies of the first (2^{+}) states and the (B(E2,0^{+}\to 2^{+})) transition probabilities are given. A reasonable agreement with available experimental data is obtained. It is also shown that the mean field picture of those nuclei is strongly modified by the projection.Comment: 10 pages, 2 figures, to be published in Phys. Lett.
    corecore