10 research outputs found

    The thermodynamic landscape of carbon redox biochemistry

    Full text link
    Redox biochemistry plays a key role in the transduction of chemical energy in all living systems. Observed redox reactions in metabolic networks represent only a minuscule fraction of the space of all possible redox reactions. Here we ask what distinguishes observed, natural redox biochemistry from the space of all possible redox reactions between natural and non-natural compounds. We generate the set of all possible biochemical redox reactions involving linear chain molecules with a fixed numbers of carbon atoms. Using cheminformatics and quantum chemistry tools we analyze the physicochemical and thermodynamic properties of natural and non-natural compounds and reactions. We find that among all compounds, aldose sugars are the ones with the highest possible number of connections (reductions and oxidations) to other molecules. Natural metabolites are significantly enriched in carboxylic acid functional groups and depleted in carbonyls, and have significantly higher solubilities than non-natural compounds. Upon constructing a thermodynamic landscape for the full set of reactions as a function of pH and of steady-state redox cofactor potential, we find that, over this whole range of conditions, natural metabolites have significantly lower energies than the non-natural compounds. For the set of 4-carbon compounds, we generate a Pourbaix phase diagram to determine which metabolites are local energetic minima in the landscape as a function of pH and redox potential. Our results suggest that, across a set of conditions, succinate and butyrate are local minima and would thus tend to accumulate at equilibrium. Our work suggests that metabolic compounds could have been selected for thermodynamic stability, and yields insight into thermodynamic and design principles governing nature’s metabolic redox reactions.https://www.biorxiv.org/content/10.1101/245811v1Othe

    A thermodynamic atlas of carbon redox chemical space

    No full text
    Redox biochemistry plays a key role in the transduction of chemical energy in living systems. However, the compounds observed in metabolic redox reactions are a minuscule fraction of chemical space. It is not clear whether compounds that ended up being selected as metabolites display specific properties that distinguish them from nonbiological compounds. Here, we introduce a systematic approach for comparing the chemical space of all possible redox states of linear-chain carbon molecules to the corresponding metabolites that appear in biology. Using cheminformatics and quantum chemistry, we analyze the physicochemical and thermodynamic properties of the biological and nonbiological compounds. We find that, among all compounds, aldose sugars have the highest possible number of redox connections to other molecules. Metabolites are enriched in carboxylic acid functional groups and depleted of ketones and aldehydes and have higher solubility than nonbiological compounds. Upon constructing the energy landscape for the full chemical space as a function of pH and electron-donor potential, we find that metabolites tend to have lower Gibbs energies than nonbiological molecules. Finally, we generate Pourbaix phase diagrams that serve as a thermodynamic atlas to indicate which compounds are energy minima in redox chemical space across a set of pH values and electron-donor potentials. While escape from thermodynamic equilibrium toward kinetically driven states is a hallmark of life and its origin, we envision that a deeper quantitative understanding of the environment-dependent thermodynamic landscape of putative prebiotic molecules will provide a crucial reference for future origins-of-life models.ISSN:0027-8424ISSN:1091-649

    Quantum chemistry reveals thermodynamic principles of redox biochemistry

    No full text
    Thermodynamics dictates the structure and function of metabolism. Redox reactions drive cellular energy and material flow. Hence, accurately quantifying the thermodynamics of redox reactions should reveal design principles that shape cellular metabolism. However, only few redox potentials have been measured, and mostly with inconsistent experimental setups. Here, we develop a quantum chemistry approach to calculate redox potentials of biochemical reactions and demonstrate our method predicts experimentally measured potentials with unparalleled accuracy. We then calculate the potentials of all redox pairs that can be generated from biochemically relevant compounds and highlight fundamental trends in redox biochemistry. We further address the question of why NAD/NADP are used as primary electron carriers, demonstrating how their physiological potential range fits the reactions of central metabolism and minimizes the concentration of reactive carbonyls. The use of quantum chemistry can revolutionize our understanding of biochemical phenomena by enabling fast and accurate calculation of thermodynamic values.ISSN:1553-734XISSN:1553-735

    Quantum chemistry reveals thermodynamic principles of redox biochemistry.

    No full text
    Thermodynamics dictates the structure and function of metabolism. Redox reactions drive cellular energy and material flow. Hence, accurately quantifying the thermodynamics of redox reactions should reveal design principles that shape cellular metabolism. However, only few redox potentials have been measured, and mostly with inconsistent experimental setups. Here, we develop a quantum chemistry approach to calculate redox potentials of biochemical reactions and demonstrate our method predicts experimentally measured potentials with unparalleled accuracy. We then calculate the potentials of all redox pairs that can be generated from biochemically relevant compounds and highlight fundamental trends in redox biochemistry. We further address the question of why NAD/NADP are used as primary electron carriers, demonstrating how their physiological potential range fits the reactions of central metabolism and minimizes the concentration of reactive carbonyls. The use of quantum chemistry can revolutionize our understanding of biochemical phenomena by enabling fast and accurate calculation of thermodynamic values

    Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems

    No full text
    A recently reported incident of severe pulmonary fibrosis caused by inhaled polymer nanoparticles in seven female workers obtained much attention. In addition to the release of ENM waste from industrial sites, a major release of ENMs to environmental water occurs due to home and personal use of appliances, cosmetics, and personal products, such as shampoo and sunscreen. Airborne and aqueous ENMs pose immediate danger to the human respiratory and gastrointestinal systems. ENMs may enter other human organs after they are absorbed into the bloodstream through the gastrointestinal and respiratory systems. Practically, a thorough understanding of the fundamental chemical interactions between nanoparticles and biological systems has two direct impacts. First, this knowledge will encourage and assist experimental approaches to chemically modify nanoparticle surfaces for various industrial or medicinal applications

    Molecular Variants Characterization in Protein Therapeutics Development

    No full text
    corecore