28 research outputs found

    The Neurophysiology of Auditory Hallucinations – A Historical and Contemporary Review

    Get PDF
    Electroencephalography and magnetoencephalography are two techniques that distinguish themselves from other neuroimaging methodologies through their ability to directly measure brain-related activity and their high temporal resolution. A large body of research has applied these techniques to study auditory hallucinations. Across a variety of approaches, the left superior temporal cortex is consistently reported to be involved in this symptom. Moreover, there is increasing evidence that a failure in corollary discharge, i.e., a neural signal originating in frontal speech areas that indicates to sensory areas that forthcoming thought is self-generated, may underlie the experience of auditory hallucinations

    Pattern classification based on the amygdala does not predict an individual's response to emotional stimuli

    Get PDF
    Functional magnetic resonance imaging (fMRI) studies have often recorded robust univariate group effects in the amygdala of subjects exposed to emotional stimuli. Yet it is unclear to what extent this effect also holds true when multi-voxel pattern analysis (MVPA) is applied at the level of the individual participant. Here we sought to answer this question. To this end, we combined fMRI data from two prior studies (N = 112). For each participant, a linear support vector machine was trained to decode the valence of emotional pictures (negative, neutral, positive) based on brain activity patterns in either the amygdala (primary region-of-interest analysis) or the whole-brain (secondary exploratory analysis). The accuracy score of the amygdala-based pattern classifications was statistically significant for only a handful of participants (4.5%) with a mean and standard deviation of 37% ± 5% across all subjects (range: 28–58%; chance-level: 33%). In contrast, the accuracy score of the whole-brain pattern classifications was statistically significant in roughly half of the participants (50.9%), and had an across-subjects mean and standard deviation of 49% ± 6% (range: 33–62%). The current results suggest that the information conveyed by the emotional pictures was encoded by spatially distributed parts of the brain, rather than by the amygdala alone, and may be of particular relevance to studies that seek to target the amygdala in the treatment of emotion regulation problems, for example via real-time fMRI neurofeedback training.publishedVersio

    Can Mindfulness Address Maladaptive Eating Behaviors? Why Traditional Diet Plans Fail and How New Mechanistic Insights May Lead to Novel Interventions

    Get PDF
    Emotional and other maladaptive eating behaviors develop in response to a diversity of triggers, from psychological stress to the endless external cues in our modern food environment. While the standard approach to food- and weight-related concerns has been weight-loss through dietary restriction, these interventions have produced little long-term benefit, and may be counterproductive. A growing understanding of the behavioral and neurobiological mechanisms that underpin habit formation may explain why this approach has largely failed, and pave the way for a new generation of non-pharmacologic interventions. Here, we first review how modern food environments interact with human biology to promote reward-related eating through associative learning, i.e., operant conditioning. We also review how operant conditioning (positive and negative reinforcement) cultivates habit-based reward-related eating, and how current diet paradigms may not directly target such eating. Further, we describe how mindfulness training that targets reward-based learning may constitute an appropriate intervention to rewire the learning process around eating. We conclude with examples that illustrate how teaching patients to tap into and act on intrinsic (e.g., enjoying healthy eating, not overeating, and self-compassion) rather than extrinsic reward mechanisms (e.g., weighing oneself), is a promising new direction in improving individuals\u27 relationship with food

    Auditory Hallucinations and the Brain’s Resting-State Networks: Findings and Methodological Observations

    Get PDF
    In recent years, there has been increasing interest in the potential for alterations to the brain’s resting-state networks (RSNs) to explain various kinds of psychopathology. RSNs provide an intriguing new explanatory framework for hallucinations, which can occur in different modalities and population groups, but which remain poorly understood. This collaboration from the International Consortium on Hallucination Research (ICHR) reports on the evidence linking resting-state alterations to auditory hallucinations (AH) and provides a critical appraisal of the methodological approaches used in this area. In the report, we describe findings from resting connectivity fMRI in AH (in schizophrenia and nonclinical individuals) and compare them with findings from neurophysiological research, structural MRI, and research on visual hallucinations (VH). In AH, various studies show resting connectivity differences in left-hemisphere auditory and language regions, as well as atypical interaction of the default mode network and RSNs linked to cognitive control and salience. As the latter are also evident in studies of VH, this points to a domain-general mechanism for hallucinations alongside modality-specific changes to RSNs in different sensory regions. However, we also observed high methodological heterogeneity in the current literature, affecting the ability to make clear comparisons between studies. To address this, we provide some methodological recommendations and options for future research on the resting state and hallucinations

    Symptom dimensions of the psychotic symptom rating scales in psychosis: a multisite study

    Full text link
    The Psychotic Symptom Rating Scales (PSYRATS) is an instrument designed to quantify the severity of delusions and hallucinations and is typically used in research studies and clinical settings focusing on people with psychosis and schizophrenia. It is comprised of the auditory hallucinations (AHS) and delusions subscales (DS), but these subscales do not necessarily reflect the psychological constructs causing intercorrelation between clusters of scale items. Identification of these constructs is important in some clinical and research contexts because item clustering may be caused by underlying etiological processes of interest. Previous attempts to identify these constructs have produced conflicting results. In this study, we compiled PSYRATS data from 12 sites in 7 countries, comprising 711 participants for AHS and 520 for DS. We compared previously proposed and novel models of underlying constructs using structural equation modeling. For the AHS, a novel 4-dimensional model provided the best fit, with latent variables labeled Distress (negative content, distress, and control), Frequency (frequency, duration, and disruption), Attribution (location and origin of voices), and Loudness (loudness item only). For the DS, a 2-dimensional solution was confirmed, with latent variables labeled Distress (amount/intensity) and Frequency (preoccupation, conviction, and disruption). The within-AHS and within-DS dimension intercorrelations were higher than those between subscales, with the exception of the AHS and DS Distress dimensions, which produced a correlation that approached the range of the within-scale correlations. Recommendations are provided for integrating these underlying constructs into research and clinical applications of the PSYRATS

    Oscillatory Cortical Network Involved in Auditory Verbal Hallucinations in Schizophrenia

    Get PDF
    Auditory verbal hallucinations (AVH), a prominent symptom of schizophrenia, are often highly distressing for patients. Better understanding of the pathogenesis of hallucinations could increase therapeutic options. Magnetoencephalography (MEG) provides direct measures of neuronal activity and has an excellent temporal resolution, offering a unique opportunity to study AVH pathophysiology.Twelve patients (10 paranoid schizophrenia, 2 psychosis not otherwise specified) indicated the presence of AVH by button-press while lying in a MEG scanner. As a control condition, patients performed a self-paced button-press task. AVH-state and non-AVH state were contrasted in a region-of-interest (ROI) approach. In addition, the two seconds before AVH onset were contrasted with the two seconds after AVH onset to elucidate a possible triggering mechanism.AVH correlated with a decrease in beta-band power in the left temporal cortex. A decrease in alpha-band power was observed in the right inferior frontal gyrus. AVH onset was related to a decrease in theta-band power in the right hippocampus.These results suggest that AVH are triggered by a short aberration in the theta band in a memory-related structure, followed by activity in language areas accompanying the experience of AVH itself

    van Lutterveld, Remko

    No full text

    Improving efficiency in neuroimaging research through application of Lean principles.

    Get PDF
    Introduction"Lean" is a set of management principles which focus on increasing value and efficiency by reducing or avoiding waste (e.g., overproduction, defects, inventory, transportation, waiting, motion, over processing). It has been applied to manufacturing, education, and health care, leading to optimized process flow, increased efficiency and increased team empowerment. However, to date, it has not been applied to neuroimaging research.MethodsLean principles, such as Value stream mapping (e.g. a tool with which steps in the workflow can be identified on which to focus improvement efforts), 5S (e.g. an organizational method to boost workplace efficiency and efficacy) and Root-cause analysis (e.g. a problem-solving approach to identify key points of failure in a system) were applied to an ongoing, large neuroimaging study that included seven research visits per participant. All team members participated in a half-day exercise in which the entire project flow was visualized and areas of inefficiency were identified. Changes focused on removing obstacles, standardization, optimal arrangement of equipment and root-cause-analysis. A process for continuous improvement was also implemented. Total time of an experiment was recorded before implementation of Lean for two participants and after implementation of Lean for two participants. Satisfaction of team members was assessed anonymously on a 5-item Likert scale, ranging from much worsened to much improved.ResultsAll team members (N = 6) considered the overall experience of conducting an experiment much improved after implementation of Lean. Five out of six team members indicated a much-improved reduction in time, with the final team member considering this somewhat improved. Average experiment time was reduced by 13% after implementation of Lean (from 142 and 147 minutes to 124 and 128 minutes).DiscussionLean principles can be successfully applied to neuroimaging research. Training in Lean principles for junior research scientists is recommended

    Meditation is associated with increased brain network integration

    No full text
    Introduction This study aims to identify novel quantitative EEG measures associated with mindfulness meditation. As there is some evidence that meditation is associated with higher integration of brain networks, we focused on EEG measures of network integration. Methods Sixteen novice meditators and sixteen experienced meditators participated in the study. Novice meditators performed a basic meditation practice that supported effortless awareness, which is an important quality of experience related to mindfulness practices, while their EEG was recorded. Experienced meditators performed a self-selected meditation practice that supported effortless awareness. Network integration was analyzed with maximum betweenness centrality and leaf fraction (which both correlate positively with network integration) as well as with diameter and average eccentricity (which both correlate negatively with network integration), based on a phase-lag index (PLI) and minimum spanning tree (MST) approach. Differences between groups were assessed using repeated-measures ANOVA for the theta (4–8 Hz), alpha (8–13 Hz) and lower beta (13–20 Hz) frequency bands. Results Maximum betweenness centrality was significantly higher in experienced meditators than in novices (P = 0.012) in the alpha band. In the same frequency band, leaf fraction showed a trend toward being significantly higher in experienced meditators than in novices (P = 0.056), while diameter and average eccentricity were significantly lower in experienced meditators than in novices (P = 0.016 and P = 0.028 respectively). No significant differences between groups were observed for the theta and beta frequency bands. Conclusion These results show that alpha band functional network topology is better integrated in experienced meditators than in novice meditators during meditation. This novel finding provides the rationale to investigate the temporal relation between measures of functional connectivity network integration and meditation quality, for example using neurophenomenology experiments
    corecore