872 research outputs found

    Solar Wind Electric Fields in the Ion Cyclotron Frequency Range

    Full text link
    Measurements of fluctuations of electric fields in the frequency range from a fraction of one Hz to 12.5 Hz are presented, and corrected for the Lorentz transformation of magnetic fluctuations to give the electric fields in the plasma frame. The electric fields are large enough to provide the dominant force on the ions of the solar wind in the region near the ion cyclotron frequency of protons, larger than the force due to magnetic fluctuations. They provide sufficient velocity space diffusion or heating to counteract conservation of magnetic moment in the expanding solar wind to maintain nearly isotropic velocity distributions

    Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence

    Full text link
    Magnetohydrodynamic (MHD) turbulence in the solar wind is observed to show the spectral behavior of classical Kolmogorov fluid turbulence over an inertial subrange and departures from this at short wavelengths, where energy should be dissipated. Here we present the first measurements of the electric field fluctuation spectrum over the inertial and dissipative wavenumber ranges in a β1\beta \gtrsim 1 plasma. The k5/3k^{-5/3} inertial subrange is observed and agrees strikingly with the magnetic fluctuation spectrum; the wave phase speed in this regime is shown to be consistent with the Alfv\'en speed. At smaller wavelengths kρi1k \rho_i \geq 1 the electric spectrum is softer and is consistent with the expected dispersion relation of short-wavelength kinetic Alfv\'en waves. Kinetic Alfv\'en waves damp on the solar wind ions and electrons and may act to isotropize them. This effect may explain the fluid-like nature of the solar wind.Comment: submitted; 4 pages + 3 figure

    Observations of solar wind ion charge exchange in the comet Halley coma

    Get PDF
    Giotto Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) observations of solar wind ions show charge exchange effects and solar wind compositional changes in the coma of comet Halley. As the comet was approached, the He(++) to proton density ratio increased until about 1 hour before closest approach after which time it decreased. Abrupt increases in this ratio were also observed in the beginning and near the end of the so-called Mystery Region (8.6 - 5.5(10)(exp 5) km from the comet along the spacecraft trajectory). These abrupt increases in the density ratio were well correlated with enhanced fluxes of keV electrons as measured by the Giotto plasma electron spectrometer. The general increase and then decrease of the He(++) to proton density ratio is quantitatively consistent with a combination of the addition of protons of cometary origin to the plasma and loss of plasma through charge exchange of protons and He(++). In general agreement with the solar wind proton and He(++) observations, solar wind oxygen and carbon ions were observed to charge exchange from higher to lower charge states with decreasing distance to the comet. The more abrupt increases in the He(++) to proton and the He(++) to O(6+) density ratios in the mystery region require a change in the solar wind ion composition in this region while the correlation with energetic electrons indicates processes associated with the comet

    Ion Cyclotron Waves in the High Altitude Cusp: CLUSTER observations at Varying Spacecraft Separations

    Get PDF
    We have analysed high-resolution Cluster magnetic field data during three high-altitude cusp crossings in 2001 and 2002. The Cluster separations for these crossings varied between 100 and 600 km and therefore provided an unique opportunity to study wave properties at different length scales. In the cusp Cluster sees frequent intervals of magnetic field fluctuations with clear peaks in power close to the local ion cyclotron frequency, and both left- and right-handed polarisations. At large separations the power seen at different spacecraft can differ by orders of magnitude. For smaller separations, the power seen at the four spacecraft agrees better but still shows some differences. For all separations there was no significant correlation between the signals seen at different spacecraft, indicative of very local structure. The origin of the waves appears to lie in highly filamented sheared plasma flows present in the cusp

    Plasma and Energetic Particle Behaviors During Asymmetric Magnetic Reconnection at the Magnetopause

    Get PDF
    The factors controlling asymmetric reconnection and the role of the cold plasma population in the reconnection process are two outstanding questions. We present a case study of multipoint Cluster observations demonstrating that the separatrix and flow boundary angles are greater on the magnetosheath than on the magnetospheric side of the magnetopause, probably due to the stronger density than magnetic field asymmetry at this boundary. The motion of cold plasmaspheric ions entering the reconnection region differs from that of warmer magnetosheath and magnetospheric ions. In contrast to the warmer ions, which are probably accelerated by reconnection in the diffusion region near the subsolar magnetopause, the colder ions are simply entrained by drifts at high latitudes on the recently reconnected magnetic field lines. This indicates that plasmaspheric ions can sometimes play only a very limited role in asymmetric reconnection, in contrast to previous simulation studies. Three cold ion populations (probably H+, He+, and O+) appear in the energy spectrum, consistent with ion acceleration to a common velocity

    Pain psychology in the 21st century: lessons learned and moving forward

    Get PDF
    Background and aims In the spring of 2019, Professor Steven J. Linton, the founder of the Center for Health and Medical Psychology (CHAMP) at Örebro University, Sweden, formally retired. As a tribute to his scholarly work covering decades of influence and inspiration to the field of pain psychology, the research center organized a topical conference titled “Pain in the 21st century: Where do we come from and where are we going?”, which resulted in this state-of the-art synthesis. The aim of this declaration is to highlight lessons learned but not in the least is meant to inspire and guide our continued journey forward, developing pain psychology into the 21st century. Methods Several collaborators of Professor Linton have summarized and reflected on the current state-of-the-art of pain psychology from the perspective of his input to the field, as well as on developments from the last years of advancements in pain psychology. Results The topics have been divided into six themed sections covering the fear avoidance model, transdiagnostics, secondary prevention, risk- and protective factors, communication and contextual factors. The sections cover a broad spectrum, from basic experimental studies, integrating emotion and motivational theories into current theoretical models, to applied research on the effect of early interventions as well as sophisticated emotion-focused treatment models for pain patients with concurrent emotional ill-health. Conclusions There have been major advancements within pain psychology research during the last decades, moving the field towards a more comprehensive picture, taking emotional and motivational aspects into account to understand pain sufferers. Although psychologically informed interventions in general mainly focus on the individual, it has been put forward that pain management is highly influenced by the surrounding environment, including communication with health care providers, and the occupational and social context. Implications Professor Steven J. Linton has been at the forefront of pain psychology research during the last decades, and inspired by his work this journey will continue into the 21st century, with the ultimate goal of enhancing the understanding and treatment for all people suffering from persistent and disabling pain

    In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail

    Get PDF
    Magnetic reconnection is one of the most important processes in astrophysical, space and laboratory plasmas. Identifying the structure around the point at which the magnetic field lines break and subsequently reform, known as the magnetic null point, is crucial to improving our understanding reconnection. But owing to the inherently three-dimensional nature of this process, magnetic nulls are only detectable through measurements obtained simultaneously from at least four points in space. Using data collected by the four spacecraft of the Cluster constellation as they traversed a diffusion region in the Earth's magnetotail on 15 September, 2001, we report here the first in situ evidence for the structure of an isolated magnetic null. The results indicate that it has a positive-spiral structure whose spatial extent is of the same order as the local ion inertial length scale, suggesting that the Hall effect could play an important role in 3D reconnection dynamics.Comment: 14 pages, 4 figure
    corecore