71 research outputs found

    High-energy particle transport in 3D hydrodynamic models of colliding-wind binaries

    Full text link
    Massive stars in binary systems (as WR140, WR147 or η\eta Carinae) have long been regarded as potential sources of high-energy γ\gamma-rays. The emission is thought to arise in the region where the stellar winds collide and produce relativistic particles which subsequently might be able to emit γ\gamma-rays. Detailed numerical hydrodynamic simulations have already offered insight in the complex dynamics of the wind collision region (WCR), while independent analytical studies, albeit with simplified descriptions of the WCR, have shed light on the spectra of charged particles. In this paper, we describe a combination of these two approaches. We present a 3D-hydrodynamical model for colliding stellar winds and compute spectral energy distributions of relativistic particles for the resulting structure of the WCR. The hydrodynamic part of our model incorporates the line-driven acceleration of the winds, gravity, orbital motion and the radiative cooling of the shocked plasma. In our treatment of charged particles we consider diffusive shock acceleration in the WCR and the subsequent cooling via inverse Compton losses (including Klein-Nishina effects), bremsstrahlung, collisions and other energy loss mechanisms.Comment: 28 pages, 9 figures / accepted for publication in The Astrophysical Journa

    Gamma-ray follow-up studies on Eta Carinae

    Full text link
    Observations of high energy gamma rays recently revealed a persistent source in spatial coincidence with the binary system Eta Carinae. Since modulation of the observed gamma-ray flux on orbital time scales has not been reported so far, an unambiguous identification was hitherto not possible. Particularly the observations made by the Fermi Large Area Telescope (LAT) posed additional questions regarding the actual emission scenario owing to the existence of two energetically distinct components in the gamma-ray spectrum of this source, best described by an exponentially cutoff power-law function (CPL) at energies below 10 GeV and a power-law (PL) component dominant at higher energies. The increased exposure in conjunction with the improved instrumental response functions of the LAT now allow us to perform a more detailed investigation of location, spectral shape, and flux time history of the observed gamma-ray emission. For the first time, we are able to report a weak but regular flux decrease over time. This can be understood and interpreted in a colliding-wind binary scenario for orbital modulation of the gamma-ray emission. We find the spectral shape of the gamma-ray signal in agreement with a single emitting particle population in combination with significant absorption by gamma-gamma pair production. Studying the correlation of the flux decrease with the orbital separation of the binary components allows us to predict the behaviour up to the next periastron passage in 2014.Comment: 11 pages, 9 figure

    Nuclear pores as versatile reference standards for quantitative superresolution microscopy

    Get PDF
    Quantitative fluorescence and superresolution microscopy are often limited by insufficient data quality or artifacts. In this context, it is essential to have biologically relevant control samples to benchmark and optimize the quality of microscopes, labels and imaging conditions. Here, we exploit the stereotypic arrangement of proteins in the nuclear pore complex as in situ reference structures to characterize the performance of a variety of microscopy modalities. We created four genome edited cell lines in which we endogenously labeled the nucleoporin Nup96 with mEGFP, SNAP-tag, HaloTag or the photoconvertible fluorescent protein mMaple. We demonstrate their use (1) as three-dimensional resolution standards for calibration and quality control, (2) to quantify absolute labeling efficiencies and (3) as precise reference standards for molecular counting. These cell lines will enable the broader community to assess the quality of their microscopes and labels, and to perform quantitative, absolute measurements

    Alcohol dehydrogenase 1 of barley modulates susceptibility to the parasitic fungus Blumeria graminis f.sp. hordei

    Get PDF
    Plant primary energy metabolism is profoundly reorganized under biotic stress conditions and there is increasing evidence for a role for the fermentative pathway in biotic interactions. However, the mechanisms regulating metabolic reprogramming are not well understood despite its critical function in the biotic stress response. Here the function of alcohol dehydrogenase (ADH) in the interaction of barley with the parasitic fungus Blumeria graminis f.sp. hordei (Bgh) is addressed. Challenge of susceptible barley leaves with Bgh resulted in transcriptional activation of HvADH1 and an induction of ADH enzyme activity starting 24 h after infection and reaching a clear-cut effect 4 d after infection. This increase in ADH enzyme activity was not observed in the resistant near-isogenic mlo5 line. Moreover, an induction of ADH enzyme activity by Bgh was enhanced in the presence of sucrose in hydroponically grown seedlings. Transient knock-down or overexpression of HvADH1 in barley epidermal cells mediated a decrease or increase in the penetration success of Bgh, respectively. Inhibition of ADH activity by pyrazole resulted in a delay in symptoms. The pyrazole effect could be overcome by adding glucose to the incubation medium, pinpointing a nutritional effect of ADH in the barley–Bgh interaction. Taken together, misexpression of pathogen-inducible HvADH1 or variation of ADH activity modulates the pathogen response of barley to the biotrophic fungal parasite Bgh. In this way, ADH knock-down/inhibition results in reduced fungal success. The possibility is discussed that ADH activity supports biotrophy by maintaining glycolytic metabolism in pathogen-stressed barley

    Variable millimetre radiation from the colliding-wind binary Cygnus OB2 #8A

    Get PDF
    Context. Massive binaries have stellar winds that collide. In the colliding-wind region, various physically interesting processes occur, leading to enhanced X-ray emission, non-thermal radio emission, as well as non-thermal X-rays and gamma-rays. Non-thermal radio emission (due to synchrotron radiation) has so far been observed at centimetre wavelengths. At millimetre wavelengths, the stellar winds and the colliding-wind region emit more thermal free-free radiation, and it is expected that any non-thermal contribution will be difficult or impossible to detect. Aims. We aim to determine if the material in the colliding-wind region contributes substantially to the observed millimetre fluxes of a colliding-wind binary. We also try to distinguish the synchrotron emission from the free-free emission. Methods. We monitored the massive binary Cyg OB2 #8A at 3 mm with the NOrthern Extended Millimeter Array (NOEMA) interferometer of the Institut de Radioastronomie Millimétrique (IRAM). The data were collected in 14 separate observing runs (in 2014 and 2016), and provide good coverage of the orbital period. Results. The observed millimetre fluxes range between 1.1 and 2.3 mJy, and show phase-locked variability, clearly indicating that a large part of the emission is due to the colliding-wind region. A simple synchrotron model gives fluxes with the correct order of magnitude, but with a maximum that is phase-shifted with respect to the observations. Qualitatively this phase shift can be explained by our neglect of orbital motion on the shape of the colliding-wind region. A model using only free-free emission results in only a slightly worse explanation of the observations. Additionally, on the map of our observations we also detect the O6.5 III star Cyg OB2 #8B, for which we determine a 3 mm flux of 0.21 ± 0.033 mJy. Conclusions. The question of whether synchrotron radiation or free-free emission dominates the millimetre fluxes of Cyg OB2 #8A remains open. More detailed modelling of this system, based on solving the hydrodynamical equations, is required to give a definite answer

    Innovation und Trends für Mobiles Lernen

    Full text link
    Der Beitrag zeigt aktuelle Trends im Bereich der mobilen und ubiquitären Lerntechnologien auf, welche die klassischen Konzepte von Mobilem Lernen erweitern: a) Mobiler und allgegenwärtiger Zugang zu Lerninhalten b) unterbrechungsfreie Lernunterstützung oder "Seamless Learning Support", die nahtlose Integration von Lernunterstützung in gemischten Lernszenarien, c) Smartphones und Sensoren im Mobilen Lernen, d) Mobile Gaming und mobile Augmented Reality und e) situierte eingebettete Displays. Anhand dieser Trends werden die Konsequenzen für das didaktische Design und darunter liegende Lernkonzepte diskutiert

    Human cytomegalovirus immediate-early 1 protein rewires upstream STAT3 to downstream STAT1 signaling switching an IL6-type to an IFNγ-like response

    Get PDF
    MN and CP were supported by the Wellcome Trust (www.wellcome.ac.uk) Institutional Strategic Support Fund and CP was supported by the Deutsche Forschungsgemeinschaft (PA 815/2-1; www.dfg.de).The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.Publisher PDFPeer reviewe

    A Range of Earth Observation Techniques for Assessing Plant Diversity

    Get PDF
    AbstractVegetation diversity and health is multidimensional and only partially understood due to its complexity. So far there is no single monitoring approach that can sufficiently assess and predict vegetation health and resilience. To gain a better understanding of the different remote sensing (RS) approaches that are available, this chapter reviews the range of Earth observation (EO) platforms, sensors, and techniques for assessing vegetation diversity. Platforms include close-range EO platforms, spectral laboratories, plant phenomics facilities, ecotrons, wireless sensor networks (WSNs), towers, air- and spaceborne EO platforms, and unmanned aerial systems (UAS). Sensors include spectrometers, optical imaging systems, Light Detection and Ranging (LiDAR), and radar. Applications and approaches to vegetation diversity modeling and mapping with air- and spaceborne EO data are also presented. The chapter concludes with recommendations for the future direction of monitoring vegetation diversity using RS
    corecore