264 research outputs found

    QCD with Adjoint Scalars in 2D: Properties in the Colourless Scalar Sector

    Get PDF
    We present a numerical study of an SU(3) gauged 2D model for adjoint scalar fields, defined by dimensional reduction of pure gauge QCD in (2+1)D at high temperature. In the symmetric phase of its global Z_2 symmetry, two colourless boundstates, even and odd under Z_2, are identified. Their respective contributions (poles) in correlation functions of local composite operators A_n of degree n=2p and 2p+1 in the scalar fields (p=1,2) fulfill factorization. The contributions of two particle states (cuts) are detected. Their size agrees with estimates based on a meanfield-like decomposition of the p=2 operators into polynomials in p=1 operators. No sizable signal in any A_n correlation can be attributed to 1/n times a Debye screening length associated with n elementary fields. These results are quantitatively consistent with the picture of scalar ``matter'' fields confined within colourless boundstates whose residual ``strong'' interactions are very weak.Comment: 27 pages, improved presentation of results and some references added, as accepted by Nucl. Phys.

    High Temperature 3D QCD: Dimensional Reduction at Work

    Full text link
    We investigate the three-dimensional SU(3) gauge theory at finite temperature in the framework of dimensional reduction. The large scale properties of this theory are expected to be conceptually more complicated than in four dimensions. The dimensionally reduced action is computed in closed analytical form. The resulting effective two-dimensional theory is studied numerically both in the electric and magnetic sector. We find that dimensional reduction works excellently down to temperatures of 1.5 times the deconfinement phase transition temperature and even on rather short length scales. We obtain strong evidence that for QCD3{\rm QCD}_3, even at high temperature the colour averaged potential is represented by the exchange of a single state, at variance with the usual Debye screening picture involving a pair of electric gluons.Comment: 27 page

    Lattice supersymmetry, superfields and renormalization

    Full text link
    We study Euclidean lattice formulations of non-gauge supersymmetric models with up to four supercharges in various dimensions. We formulate the conditions under which the interacting lattice theory can exactly preserve one or more nilpotent anticommuting supersymmetries. We introduce a superfield formalism, which allows the enumeration of all possible lattice supersymmetry invariants. We use it to discuss the formulation of Q-exact lattice actions and their renormalization in a general manner. In some examples, one exact supersymmetry guarantees finiteness of the continuum limit of the lattice theory. As a consequence, we show that the desired quantum continuum limit is obtained without fine tuning for these models. Finally, we discuss the implications and possible further applications of our results to the study of gauge and non-gauge models.Comment: 44 pages, 1 figur

    The Asymptotic Expansion of Lattice Loop Integrals Around the Continuum Limit

    Get PDF
    We present a method of computing any one-loop integral in lattice perturbation theory by systematically expanding around its continuum limit. At any order in the expansion in the lattice spacing, the result can be written as a sum of continuum loop integrals in analytic regularization and a few genuine lattice integrals (``master integrals''). These lattice master integrals are independent of external momenta and masses and can be computed numerically. At the one-loop level, there are four master integrals in a theory with only bosonic fields, seven in HQET and sixteen in QED or QCD with Wilson fermions.Comment: 9 pages, 2 figure

    Critical Phenomena with Linked Cluster Expansions in a Finite Volume

    Full text link
    Linked cluster expansions are generalized from an infinite to a finite volume. They are performed to 20th order in the expansion parameter to approach the critical region from the symmetric phase. A new criterion is proposed to distinguish 1st from 2nd order transitions within a finite size scaling analysis. The criterion applies also to other methods for investigating the phase structure such as Monte Carlo simulations. Our computational tools are illustrated at the example of scalar O(N) models with four and six-point couplings for N=1N=1 and N=4N=4 in three dimensions. It is shown how to localize the tricritical line in these models. We indicate some further applications of our methods to the electroweak transition as well as to models for superconductivity.Comment: 36 pages, latex2e, 7 eps figures included, uuencoded, gzipped and tarred tex file hdth9607.te

    Interpolation Parameter and Expansion for the Three Dimensional Non-Trivial Scalar Infrared Fixed Point

    Get PDF
    We compute the non--trivial infrared ϕ34\phi^4_3--fixed point by means of an interpolation expansion in fixed dimension. The expansion is formulated for an infinitesimal momentum space renormalization group. We choose a coordinate representation for the fixed point interaction in derivative expansion, and compute its coordinates to high orders by means of computer algebra. We compute the series for the critical exponent ν\nu up to order twenty five of interpolation expansion in this representation, and evaluate it using \pade, Borel--\pade, Borel--conformal--\pade, and Dlog--\pade resummation. The resummation returns 0.6262(13)0.6262(13) as the value of ν\nu.Comment: 29 pages, Latex2e, 2 Postscript figure

    Meron-cluster algorithms and chiral symmetry breaking in a (2+1)-d staggered fermion model

    Get PDF
    The recently developed Meron-Cluster algorithm completely solves the exponentially difficult sign problem for a number of models previously inaccessible to numerical simulation. We use this algorithm in a high-precision study of a model of N=1 flavor of staggered fermions in (2+1)-dimensions with a four-fermion interaction. This model cannot be explored using standard algorithms. We find that the Z(2) chiral symmetry of this model is spontaneously broken at low temperatures and that the finite-temperature chiral phase transition is in the universality class of the 2-d Ising model, as expected.Comment: 18 pages, LaTe

    A Lattice Monte Carlo Study of the Hot Electroweak Phase Transition

    Get PDF
    We study the finite temperature electroweak phase transition with lattice perturbation theory and Monte Carlo techniques. Dimensional reduction is used to approximate the full four-dimensional SU(2) + a fundamental doublet Higgs theory by an effective three-dimensional SU(2) + adjoint Higgs + fundamental Higgs theory with coefficients depending on temperature via screening masses and mass counterterms. Fermions contribute to the effective theory only via the NFN_F and mtopm_{\rm top} dependence of the coefficients. For sufficiently small lattices (N3<303N^3 < 30^3 for mHm_H = 35 GeV) the study of the one-loop lattice effective potential shows the existence of the {\em second} order phase transition even for the small Higgs masses. At the same time, a clear signal of a {\em first order} phase transition is seen on the lattice simulations with a transition temperature close to but less than the value determined from the perturbative calculations. This indicates that the dynamics of the first order electroweak phase transition depends strongly on non-perturbative effects and is not exclusively related to the so-called ϕ3\phi^3 term in the effective potential.Comment: 15 pages, use latex+epsfig, includes 6 ps-figures, CERN-TH.6901/9

    The Spatial String Tension in the Deconfined Phase of the (3+1)-Dimensional SU(2) Gauge Theory

    Get PDF
    We present results of a detailed investigation of the temperature dependence of the spatial string tension in SU(2) gauge theory. We show, for the first time, that the spatial string tension is scaling on the lattice and thus is non-vanishing in the continuum limit. It is temperature independent below Tc and rises rapidly above. For temperatures larger than 2Tc we find a scaling behaviour consistent with sigma_s(T) = 0.136(11) g^4(T) T^2, where g(T) is the 2-loop running coupling constant with a scale parameter determined as Lambda_T = 0.076(13) Tc.Comment: 8 pages (Latex, shell archive, 3 PostScript figures), HLRZ-93-43, BI-TP 93/30, FSU-SCRI-93-76, WUB 93-2

    Gauge Theories on a 2+2 Anisotropic Lattice

    Get PDF
    The implementation of gauge theories on a four-dimensional anisotropic lattice with two distinct lattice spacings is discussed, with special attention to the case where two axes are finely and two axes are coarsely discretized. Feynman rules for the Wilson gauge action are derived and the renormalizability of the theory and the recovery of the continuum limit are analyzed. The calculation of the gluon propagator and the restoration of Lorentz invariance in on-shell states is presented to one-loop order in lattice perturbation theory for SU(Nc)SU(N_c) on both 2+2 and 3+1 lattices.Comment: 27 pages, uses feynmf. Font compatibility adjuste
    corecore