2,794 research outputs found

    Cosmology with a long range repulsive force

    Get PDF
    We consider a class of cosmological models in which the universe is filled with a (non-electric) charge density that repels itself by means of a force carried by a vector boson with a tiny mass. When the vector's mass depends upon other fields, the repulsive interaction gives rise to an electromagnetic barrier which prevents these fields from driving the mass to zero. This can modify the cosmology dramatically. We present a very simple realization of this idea in which the vector's mass arises from a scalar field. The electromagnetic barrier prevents this field from rolling down its potential and thereby leads to accelerated expansion.Comment: 15 pages, 8 figures, LaTeX (version accepted for publication in PRD). 3 new figures, extended discussion of observational consequence

    Power laws of complex systems from Extreme physical information

    Full text link
    Many complex systems obey allometric, or power, laws y=Yx^{a}. Here y is the measured value of some system attribute a, Y is a constant, and x is a stochastic variable. Remarkably, for many living systems the exponent a is limited to values +or- n/4, n=0,1,2... Here x is the mass of a randomly selected creature in the population. These quarter-power laws hold for many attributes, such as pulse rate (n=-1). Allometry has, in the past, been theoretically justified on a case-by-case basis. An ultimate goal is to find a common cause for allometry of all types and for both living and nonliving systems. The principle I - J = extrem. of Extreme physical information (EPI) is found to provide such a cause. It describes the flow of Fisher information J => I from an attribute value a on the cell level to its exterior observation y. Data y are formed via a system channel function y = f(x,a), with f(x,a) to be found. Extremizing the difference I - J through variation of f(x,a) results in a general allometric law f(x,a)= y = Yx^{a}. Darwinian evolution is presumed to cause a second extremization of I - J, now with respect to the choice of a. The solution is a=+or-n/4, n=0,1,2..., defining the particular powers of biological allometry. Under special circumstances, the model predicts that such biological systems are controlled by but two distinct intracellular information sources. These sources are conjectured to be cellular DNA and cellular transmembrane ion gradient

    Transient backbending behavior in the Ising model with fixed magnetization

    Full text link
    The physical origin of the backbendings in the equations of state of finite but not necessarily small systems is studied in the Ising model with fixed magnetization (IMFM) by means of the topological properties of the observable distributions and the analysis of the largest cluster with increasing lattice size. Looking at the convexity anomalies of the IMFM thermodynamic potential, it is shown that the order of the transition at the thermodynamic limit can be recognized in finite systems independently of the lattice size. General statistical mechanics arguments and analytical calculations suggest that the backbending in the caloric curve is a transient behaviour which should not converge to a plateau in the thermodynamic limit, while the first order transition is signalled by a discontinuity in other observables.Comment: 24 pages, 11 figure

    Water induced sediment levitation enhances downslope transport on Mars

    Get PDF
    On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: “levitation” of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought

    Supernova Limits on the Cosmic Equation of State

    Get PDF
    We use Type Ia supernovae studied by the High-Z Supernova Search Team to constrain the properties of an energy component which may have contributed to accelerating the cosmic expansion. We find that for a flat geometry the equation of state parameter for the unknown component, alpha_x=P_x/rho_x, must be less than -0.55 (95% confidence) for any value of Omega_m and is further limited to alpha_x<-0.60 (95%) if Omega_m is assumed to be greater than 0.1 . These values are inconsistent with the unknown component being topological defects such as domain walls, strings, or textures. The supernova data are consistent with a cosmological constant (alpha_x=-1) or a scalar field which has had, on average, an equation of state parameter similar to the cosmological constant value of -1 over the redshift range of z=1 to the present. Supernova and cosmic microwave background observations give complementary constraints on the densities of matter and the unknown component. If only matter and vacuum energy are considered, then the current combined data sets provide direct evidence for a spatially flat Universe with Omega_tot=Omega_m+Omega_Lambda = 0.94 +/- 0.26 (1-sigma).Comment: Accepted for publication in ApJ, 3 figure

    Transverse Wave Propagation in Relativistic Two-fluid Plasmas in de Sitter Space

    Full text link
    We investigate transverse electromagnetic waves propagating in a plasma in the de Sitter space. Using the 3+1 formalism we derive the relativistic two-fluid equations to take account of the effects due to the horizon and describe the set of simultaneous linear equations for the perturbations. We use a local approximation to investigate the one-dimensional radial propagation of Alfv\'en and high frequency electromagnetic waves and solve the dispersion relation for these waves numerically.Comment: 19 pages, 12 figure

    KRILLBASE: a circumpolar database of Antarctic krill and salp numerical densities, 1926–2016

    Get PDF
    Antarctic krill (Euphausia superba) and salps are major macroplankton contributors to Southern Ocean food webs and krill are also fished commercially. Managing this fishery sustainably, against a backdrop of rapid regional climate change, requires information on distribution and time trends. Many data on the abundance of both taxa have been obtained from net sampling surveys since 1926, but much of this is stored in national archives, sometimes only in notebooks. In order to make these important data accessible we have collated available abundance data (numerical density, no.

    Bianchi Type-II String Cosmological Models in Normal Gauge for Lyra's Manifold with Constant Deceleration Parameter

    Full text link
    The present study deals with a spatially homogeneous and anisotropic Bianchi-II cosmological models representing massive strings in normal gauge for Lyra's manifold by applying the variation law for generalized Hubble's parameter that yields a constant value of deceleration parameter. The variation law for Hubble's parameter generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential form. Using these two forms, Einstein's modified field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The energy-momentum tensor for such string as formulated by Letelier (1983) is used to construct massive string cosmological models for which we assume that the expansion (θ\theta) in the model is proportional to the component σ 11\sigma^{1}_{~1} of the shear tensor σij\sigma^{j}_{i}. This condition leads to A=(BC)mA = (BC)^{m}, where A, B and C are the metric coefficients and m is proportionality constant. Our models are in accelerating phase which is consistent to the recent observations. It has been found that the displacement vector β\beta behaves like cosmological term Λ\Lambda in the normal gauge treatment and the solutions are consistent with recent observations of SNe Ia. It has been found that massive strings dominate in the decelerating universe whereas strings dominate in the accelerating universe. Some physical and geometric behaviour of these models are also discussed.Comment: 24 pages, 10 figure

    Depletion potential in hard-sphere mixtures: theory and applications

    Full text link
    We present a versatile density functional approach (DFT) for calculating the depletion potential in general fluid mixtures. In contrast to brute force DFT, our approach requires only the equilibrium density profile of the small particles {\em before} the big (test) particle is inserted. For a big particle near a planar wall or a cylinder or another fixed big particle the relevant density profiles are functions of a single variable, which avoids the numerical complications inherent in brute force DFT. We implement our approach for additive hard-sphere mixtures. By investigating the depletion potential for high size asymmetries we assess the regime of validity of the well-known Derjaguin approximation for hard-sphere mixtures and argue that this fails. We provide an accurate parametrization of the depletion potential in hard-sphere fluids which should be useful for effective Hamiltonian studies of phase behavior and colloid structure
    corecore