1,286 research outputs found

    Visual images preserve metric spatial information: Evidence from studies of image scanning.

    Get PDF

    A geological 3D-model of Austria

    Get PDF
    GeoSphere Austria (formerly Geologische Bundesanstalt - Geological Survey of Austria) has produced a supra-regional 3D framework model called “3D AUSTRIA” providing a large-scale geological overview for professional geologists, students and the public. This model is intended to act as support for subsequent regional modelling projects as well as for educational and communicational purpose. The modelled domain of covers a rectangular area of 175 000 km² including the national borders of Austria, down to a depth to 60 km below sea level. Model units are defined following the nomenclature of Schmid et al. (2004) and Froitzheim et al. (2008), each unit having a specific paleo-geographic origin and tectono-metamorphic history. Seven modelling units are considered: two continental plates (1) the Adriatic Plate, (2) the Eurasian Plate, four units from the Alpine orogenic wedge (3) the South-Alpine Superunit, (4) the Austroalpine Superunit, (5) the Penninic Superunit, (6) the Sub-Penninic Superunit and (7) Neogene sedimentary basins in the foreland and within the Alps. Due to the large-scale character of the model, relatively small constituents of the Alpine Orogen are merged together (Meliata Superunit and Inner Western Carpathian Superunit with the Austroalpine Superunit, Helvetic Superunit and Allochtone Molasse with the Sup-Penninic Superunit, intrusive rocks along the Periadriatic Fault with their host unit, minor Neogene basins with the Austroalpine Superunit). The model geometry is constrained by the geological map of Austria 1:1.5M (Schuster et al., 2019), (2) 24 published cross sections and (3) published contour maps for the Moho discontinuity (Ziegler & Dèzes, 2006) and the large Neogene basins. It has been generated with the SKUA-GOCAD software suite following the workflow of Pfleiderer et al. (2016). The framework model 3D AUSTRIA can be visualized with the web 3D Viewer of Geosphere Austria (https://gis.geosphere.at/portal/home/webscene/viewer.html?webscene=c11cd25795294ba8b6f276ab2d072afb) or downloaded from the Tethys Research Data Repository (https://doi.tethys.at/10.24341/tethys.184) allowing the generation of a physical multi-part model using 3D printing technology. It provides a unique way to comprehend the fundamentally 3D nature of sedimentary and tectonic features, like the unconformity at the base of Neogene sedimentary basins, the Alpine frontal thrust or the Tauern Window. The data acquired in the framework of the AlpArray project can be used in future for refining the geometry of 3D AUSTRIA

    The brittle-to-ductile transition in cold-rolled tungsten sheets: On the loss of room-temperature ductility after annealing and the phenomenon of 45° embrittlement

    Get PDF
    The high brittle-to-ductile transition (BDT) temperature of conventionally produced tungsten (W), challenges the design of W-based structural components. Recent studies have demonstrated the potential of cold rolling to produce W sheets, which are ductile at room temperature and exhibit a BDT temperature of 208 K. In order to assess the thermal stability of these materials, we conducted isothermal heat treatments (at 1300 K, for annealing durations between 0.1 h and 210 h) combined with studies on the evolution of mechanical properties and microstructure of a severely deformed undoped W sheet. With this work, we demonstrate the need for a stabilized microstructure before utilization of cold-rolled W in high-temperature applications can take place successfully. After annealing at 1300 K for 6 h, the material properties changed remarkably: The BDT temperature increases from 208 K to 473 K and the sharp BDT of the as-rolled condition transforms into a wide transition regime spanning over more than 200 K. This means in fact, an endangered structural integrity at room temperature. We also address the so-called phenomenon of 45° embrittlement of W sheets. Here we show that cleavage fracture in strongly textured W sheets always takes place with an inclination angle of 45° to the rolling direction, independent of the studied material condition, whether as-rolled or annealed. An in-depth study of the microstructure indicates a correlation between an increased BDT temperature caused by annealing and microstructural coarsening presumably by extended recovery. We conclude that 45° embrittlement needs to be comprehended as a combined effect of an increased spacing between grain boundaries along the crack front, leading to an increased BDT, and a high orientation density of the rotated cube component or texture components close to that, which determine the preferred crack propagation of 45° to the rolling direction

    High‐Pressure‐Mediated Thiourea‐Organocatalyzed Asymmetric Michael Addition to (Hetero)aromatic Nitroolefins: Prediction of Reaction Parameters by PCP‐SAFT Modelling

    Get PDF
    Thiourea-organocatalyzed Michael additions of diethyl malonate to various heteroaromatic nitroolefins (13 examples) have been studied under high-pressure (up to 800 MPa) and ambient pressure conditions. High pressure was conducive to enhanced product yields by a factor of 2-12 at a given reaction time, high reaction rates (reaction times were decreased from 72-24 h down to 4-24 h) and high enantioselectivity. Elucidating the effects of solvents for maximizing reaction rates and yields has been carried out using the Perturbed-Chain Polar Statistical Associating Fluid Theory (PCP-SAFT), allowing for the first time a prediction of the kinetic profiles under high-hydrostatic-pressure conditions

    Effects of lithium on electrical activity and potassium ion distribution in the vertebrate central nervous system

    Get PDF
    Three different regions of the vertebrate central nervous system maintained in vitro (frog spinal cord, guinea pig olfactory cortex and hippocampus) have been used to investigate how Li+ influences membrane potential, membrane resistance, action potentials, synaptic potentials and the transmembrane K+-distribution of neurons and glial cells. In view of the therapeutic action of Li+ in manicdepressive disease, a special effort was made to determine the threshold concentration for the actions of Li+ on the parameters described above. It was observed that Li+ induced a membrane depolarization of both neurons and glial cells, a decrease of action potential amplitudes, a facilitation of monosynaptic excitatory postsynaptic potentials and a depression of polysynaptic reflexes. The membrane resistance of neurons was not altered. Li+ also induced an elevation of the free extracellular potassium concentration and a decrease of the free intracellular potassium concentration. Furthermore, in the presence of Li+ a slowing of the recovery of the membrane potential of neurons and glial cells, and of the extracellular potassium concentration after repetitive synaptic stimulation was observed. The threshold concentrations for the effects of Li+ were below 5 mmol/l in the frog spinal cord and below 2 mmol/l in the guinea pig olfactory cortex and hippocampus. The basic mechanism underlying the action of Li+ may be an interaction with the transport-function of the Na+/K+ pump

    AstroGrid-D: Grid Technology for Astronomical Science

    Full text link
    We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites, and advanced applications for specific scientific purposes, such as a connection to robotic telescopes. We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.Comment: 14 pages, 12 figures Subjects: data analysis, image processing, robotic telescopes, simulations, grid. Accepted for publication in New Astronom

    Advancing the Security of LDACS

    Get PDF
    The "Single European Sky" air traffic management master plan foresees the introduction of several modern digital data links for aeronautical communications. The candidate for long-range continental communications is the L-band Digital Aeronautical Communications System (LDACS). LDACS is a cellular, ground-based digital communications system for flight guidance and communications related to safety and regularity of flight. Hence, the aeronautical standards, imposed by the International Civil Aviation Organization (ICAO), for cybersecurity of the link and network layer, apply. In previous works, threat-and risk analyses of LDACS were conducted, a draft for an LDACS cybersecurity architecture introduced, algorithms proposed, and the security of a Mutual Authentication and Key Establishment (MAKE) procedure of LDACS formally verified. However, options for cipher-suites and certificate management for LDACS were missing. Also, previous works hardly discussed the topic of post-quantum security for LDACS. This paper proposes a cell-attachment procedure, which establishes a secure LDACS communication channel between an aircraft and corresponding ground-station upon cell-entry of the aircraft. Via the design of a hybrid LDACS Public Key Infrastructure (PKI), the choice of a pre-or post-quantum Security Level (SL) is up to the communications participants. With that, this work introduces a full LDACS cell-attachment protocol based on a PKI, certificates, certificate revocation and cipher-suites including pre-and post-quantum options. Evaluations in the symbolic model show the procedure to fulfill LDACS security requirements and a communications performance evaluation demonstrates feasibility, matching requirements imposed by regulatory documents
    corecore