2,289 research outputs found

    Quantifying uncertainties in precipitation: a case study from Greece

    Get PDF
    The main objective of the present study was the examination and the quantification of the uncertainties in the precipitation time series over the Greek area, for a 42-year time period. The uncertainty index applied to the rainfall data is a combination (total) of the departures of the rainfall season length, of the median data of the accumulated percentages and of the total amounts of rainfall. Results of the study indicated that all the stations are characterized, on an average basis, by medium to high uncertainty. The stations that presented an increasing rainfall uncertainty were the ones located mainly to the continental parts of the study region. From the temporal analysis of the uncertainty index, it was demonstrated that the greatest percentage of the years, for all the stations time-series, was characterized by low to high uncertainty (intermediate categories of the index). Most of the results of the uncertainty index for the Greek region are similar to the corresponding results of various stations all over the European region

    High-power operation of a K-band second harmonic gyroklystron

    Get PDF
    Amplification studies of a two-cavity second-harmonic gyroklystron are reported. A magnetron injection gun produces a 440 kV, 200–245 A, 1 μs beam with an average perpendicular-to-parallel velocity ratio slightly less than 1. The TE011 input cavity is driven near 9.88 GHz and the TE021 output cavity resonates near 19.76 GHz. Peak powers exceeding 21 MW are achieved with an efficiency near 21% and a large signal gain above 25 dB. This performance represents the current state of the art for gyroklystrons in terms of the peak power normalized to the output wavelength squared

    Chaotic Orbits in Thermal-Equilibrium Beams: Existence and Dynamical Implications

    Full text link
    Phase mixing of chaotic orbits exponentially distributes these orbits through their accessible phase space. This phenomenon, commonly called ``chaotic mixing'', stands in marked contrast to phase mixing of regular orbits which proceeds as a power law in time. It is operationally irreversible; hence, its associated e-folding time scale sets a condition on any process envisioned for emittance compensation. A key question is whether beams can support chaotic orbits, and if so, under what conditions? We numerically investigate the parameter space of three-dimensional thermal-equilibrium beams with space charge, confined by linear external focusing forces, to determine whether the associated potentials support chaotic orbits. We find that a large subset of the parameter space does support chaos and, in turn, chaotic mixing. Details and implications are enumerated.Comment: 39 pages, including 14 figure

    Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the past twelve years, lentiviral (LV) vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression in target cells <it>in vitro </it>and <it>in vivo</it>. However, despite significant progress, the production and concentration of high-titer, high-quality LV vector stocks is still cumbersome and costly.</p> <p>Methods</p> <p>Here we present a simplified protocol for LV vector production on a laboratory scale using HYPERFlask vessels. HYPERFlask vessels are high-yield, high-performance flasks that utilize a multilayered gas permeable growth surface for efficient gas exchange, allowing convenient production of high-titer LV vectors. For subsequent concentration of LV vector stocks produced in this way, we describe a facile protocol involving Mustang Q anion exchange membrane chromatography.</p> <p>Results</p> <p>Our results show that unconcentrated LV vector stocks with titers in excess of 10<sup>8 </sup>transduction units (TU) per ml were obtained using HYPERFlasks and that these titers were higher than those produced in parallel using regular 150-cm<sup>2 </sup>tissue culture dishes. We also show that up to 500 ml of an unconcentrated LV vector stock prepared using a HYPERFlask vessel could be concentrated using a single Mustang Q Acrodisc with a membrane volume of 0.18 ml. Up to 5.3 × 10<sup>10 </sup>TU were recovered from a single HYPERFlask vessel.</p> <p>Conclusion</p> <p>The protocol described here is easy to implement and should facilitate high-titer LV vector production for preclinical studies in animal models without the need for multiple tissue culture dishes and ultracentrifugation-based concentration protocols.</p

    Efficient computation of matched solutions of the Kapchinskij-Vladimirskij envelope equations for periodic focusing lattices

    Full text link
    A new iterative method is developed to numerically calculate the periodic, matched beam envelope solution of the coupled Kapchinskij-Vladimirskij (KV) equations describing the transverse evolution of a beam in a periodic, linear focusing lattice of arbitrary complexity. Implementation of the method is straightforward. It is highly convergent and can be applied to all usual parameterizations of the matched envelope solutions. The method is applicable to all classes of linear focusing lattices without skew couplings, and also applies to all physically achievable system parameters -- including where the matched beam envelope is strongly unstable. Example applications are presented for periodic solenoidal and quadrupole focusing lattices. Convergence properties are summarized over a wide range of system parameters.Comment: 20 pages, 5 figures, Mathematica source code provide

    Ultrabroad-bandwidth multifrequency Raman generation

    Get PDF
    We report on the modeling of transient stimulated rotational Raman scattering in H2 gas. We predict a multifrequency output, spanning a bandwidth greater than the pump frequency, that may be generated without any significant delay with respect to the pump pulses. The roles of dispersion and transiency are quantified

    Generation of Relativistic Electron Bunches with Arbitrary Current Distribution via Transverse-to-Longitudinal Phase Space Exchange

    Full text link
    We propose a general method for tailoring the current distribution of relativistic electron bunches. The technique relies on a recently proposed method to exchange the longitudinal phase space emittance with one of the transverse emittances. The method consists of transversely shaping the bunch and then converting its transverse profile into a current profile via a transverse-to-longitudinal phase-space-exchange beamline. We show that it is possible to tailor the current profile to follow, in principle, any desired distributions. We demonstrate, via computer simulations, the application of the method to generate trains of microbunches with tunable spacing and linearly-ramped current profiles. We also briefly explore potential applications of the technique.Comment: 13 pages, 17 figure
    • …
    corecore