8 research outputs found

    Fetal-to-maternal signaling to initiate parturition

    Get PDF
    Multiple processes are capable of activating the onset of parturition; however, the specific contributions of the mother and the fetus to this process are not fully understood. In this issue of the JCI, Gao and colleagues present evidence that steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) regulate surfactant protein-A (SP-A) and platelet-activating factor (PAF) expression, which increases in the developing fetal lung. WT dams crossed with males deficient for both SRC-1 and SRC-2 had suppressed myometrial inflammation, increased serum progesterone, and delayed parturition, which could be reconciled by injection of either SP-A or PAF into the amnion. Together, the results of this study demonstrate that the fetal lungs produce signals to initiate labor in the mouse. This work underscores the importance of the fetus as a contributor to the onset of murine, and potentially human, parturition

    Na+-leak channel, non-selective (NALCN) regulates myometrial excitability and facilitates successful parturition

    Get PDF
    Background/Aims: Uterine contractility is controlled by electrical signals generated by myometrial smooth muscle cells. Because aberrant electrical signaling may cause inefficient uterine contractions and poor reproductive outcomes, there is great interest in defining the ion channels that regulate uterine excitability. In human myometrium, the Na+ leak channel, non-selective (NALCN) contributes to a gadolinium-sensitive, Na+-dependent leak current. The aim of this study was to determine the role of NALCN in regulating uterine excitability and examine its involvement in parturition. Methods: Wildtype C57BL/6J mice underwent timed-mating and NALCN uterine expression was measured at several time points across pregnancy including pregnancy days 7, 10, 14, 18 and 19. Sharp electrode current clamp was used to measure uterine excitability at these same time points. To determine NALCN’s contribution to myometrial excitability and pregnancy outcomes, we created smooth-muscle-specific NALCN knockout mice by crossing NALCNfx/fx mice with myosin heavy chain Cre (MHCCreeGFP) mice. Parturition outcomes were assessed by observation via surveillance video recording cre control, flox control, smNALCN+/-, and smNALCN-/- mice. Myometrial excitability was compared between pregnancy day 19 flox controls and smNALCN-/- mice. Results: We found that in the mouse uterus, NALCN protein levels were high early in pregnancy, decreased in mid and late pregnancy, and then increased in labor and postpartum. Sharp electrode current clamp recordings of mouse longitudinal myometrial samples from pregnancy days 7, 10, 14, 18, and 19 revealed day-dependent increases in burst duration and interval and decreases in spike density. NALCN smooth muscle knockout mice had reduced myometrial excitability exemplified by shortened action potential bursts, and an increased rate of abnormal labor, including prolonged and dysfunctional labor. Conclusions: Together, our findings demonstrate that the Na+ conducting channel NALCN contributes to the myometrial action potential waveform and is important for successful labor outcomes

    Fetal-to-maternal signaling to initiate parturition

    No full text

    Quantification of surface-localized and total oxytocin receptor in myometrial smooth muscle cells

    No full text
    Oxytocin acts through the oxytocin receptor (OXTR) to modulate uterine contractility. We previously identified OXTR genetic variants and showed that, in HEK293T cells, two of the OXTR protein variants localized to the cell surface less than wild-type OXTR. Here, we sought to measure OXTR in the more native human myometrial smooth muscle cell (HMSMC) line on both the cell-surface and across the whole cell, and used CRISPR editing to add an HA tag to the endogenous OXTR gene for anti-HA measurement. Quantitative flow cytometry revealed that these cells possessed 55,000 ± 3200 total OXTRs and 4900 ± 390 cell-surface OXTRs per cell. To identify any differential wild-type versus variant localization, we transiently transfected HMSMCs to exogenously express wild-type or variant OXTR with HA and green fluorescent protein tags. Total protein expression of wild-type OXTR and all tested variants were similar. However, the two variants with lower surface localization in HEK293T cells also presented lower surface localization in HMSMCs. Overall, we confirm the differential surface localization of variant OXTR in a more native cell type, and further demonstrate that the quantitative flow cytometry technique is adaptable to whole-cell measurements
    corecore