66 research outputs found

    Randomized comparison of the effects of the vitamin D(3 )adequate intake versus 100 mcg (4000 IU) per day on biochemical responses and the wellbeing of patients

    Get PDF
    BACKGROUND: For adults, vitamin D intake of 100 mcg (4000 IU)/day is physiologic and safe. The adequate intake (AI) for older adults is 15 mcg (600 IU)/day, but there has been no report focusing on use of this dose. METHODS: We compared effects of these doses on biochemical responses and sense of wellbeing in a blinded, randomized trial. In Study 1, 64 outpatients (recruited if summer 2001 25(OH)D <61 nmol/L) were given 15 or 100 mcg/day vitamin D in December 2001. Biochemical responses were followed at subsequent visits that were part of clinical care; 37 patients completed a wellbeing questionnaire in December 2001 and February 2002. Subjects for Study 2 were recruited if their 25(OH)D was <51 nmol/L in summer 2001. 66 outpatients were given vitamin D; 51 completed a wellbeing questionnaire in both December 2002 and February 2003. RESULTS: In Study 1, basal summer 25-hydroxyvitamin D [25(OH)D] averaged 48 ± 9 (SD) nmol/L. Supplementation for more than 6 months produced mean 25(OH)D levels of 79 ± 30 nmol/L for the 15 mcg/day group, and 112 ± 41 nmol/L for the 100 mcg/day group. Both doses lowered plasma parathyroid hormone with no effect on plasma calcium. Between December and February, wellbeing score improved more for the 100-mcg/day group than for the lower-dosed group (1-tail Mann-Whitney p = 0.036). In Study 2, 25(OH)D averaged 39 ± 9 nmol/L, and winter wellbeing scores improved with both doses of vitamin D (two-tail p < 0.001). CONCLUSION: The highest AI for vitamin D brought summertime 25(OH)D to >40 nmol/L, lowered PTH, and its use was associated with improved wellbeing. The 100 mcg/day dose produced greater responses. Since it was ethically necessary to provide a meaningful dose of vitamin D to these insufficient patients, we cannot rule out a placebo wellbeing response, particularly for those on the lower dose. This work confirms the safety and efficacy of both 15 and 100 mcg/day vitamin D(3 )in patients who needed additional vitamin D

    Low wintertime vitamin D levels in a sample of healthy young adults of diverse ancestry living in the Toronto area: associations with vitamin D intake and skin pigmentation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vitamin D plays a critical role in bone metabolism and many cellular and immunological processes. Recent research indicates that concentrations of serum 25-hydroxyvitamin D [25(OH)D], the main indicator of vitamin D status, should be in excess of 75 nmol/L. Low levels of 25(OH)D have been associated with several chronic and infectious diseases. Previous studies have reported that many otherwise healthy adults of European ancestry living in Canada have low vitamin D concentrations during the wintertime. However, those of non-European ancestry are at a higher risk of having low vitamin D levels. The main goal of this study was to examine the vitamin D status and vitamin D intake of young Canadian adults of diverse ancestry during the winter months.</p> <p>Methods</p> <p>One hundred and seven (107) healthy young adults self-reporting their ancestry were recruited for this study. Each participant was tested for serum 25(OH)D concentrations and related biochemistry, skin pigmentation indices and basic anthropometric measures. A seven-day food diary was used to assess their vitamin D intake. An ANOVA was used to test for significant differences in the variables among groups of different ancestry. Linear regression was employed to assess the impact of relevant variables on serum 25(OH)D concentrations.</p> <p>Results</p> <p>More than 93% of the total sample had concentrations below 75 nmol/L. Almost three-quarters of the subjects had concentrations below 50 nmol/L. There were significant differences in serum 25(OH)D levels (p < 0.001) and vitamin D intake (p = 0.034) between population groups. Only the European group had a mean vitamin D intake exceeding the current Recommended Adequate Intake (RAI = 200 IU/day). Total vitamin D intake (from diet and supplements) was significantly associated with 25(OH)D levels (p < 0.001). Skin pigmentation, assessed by measuring skin melanin content, showed an inverse relationship with serum 25(OH)D (p = 0.033).</p> <p>Conclusion</p> <p>We observe that low vitamin D levels are more prevalent in our sample of young healthy adults than previously reported, particularly amongst those of non-European ancestry. Major factors influencing 25(OH)D levels were vitamin D intake and skin pigmentation. These data suggest a need to increase vitamin D intake either through improved fortification and/or supplementation.</p

    Supplemental Vitamins and Minerals for CVD Prevention and Treatment

    Get PDF
    The authors identified individual randomized controlled trials from previous meta-analyses and additional searches, and then performed meta-analyses on cardiovascular disease outcomes and all-cause mortality. The authors assessed publications from 2012, both before and including the U.S. Preventive Service Task Force review. Their systematic reviews and meta-analyses showed generally moderate- or low-quality evidence for preventive benefits (folic acid for total cardiovascular disease, folic acid and B-vitamins for stroke), no effect (multivitamins, vitamins C, D, β-carotene, calcium, and selenium), or increased risk (antioxidant mixtures and niacin [with a statin] for all-cause mortality). Conclusive evidence for the benefit of any supplement across all dietary backgrounds (including deficiency and sufficiency) was not demonstrated; therefore, any benefits seen must be balanced against possible risks

    Rationale and Plan for Vitamin D Food Fortification : A Review and Guidance Paper

    Get PDF
    Vitamin D deficiency can lead to musculoskeletal diseases such as rickets and osteomalacia, but vitamin D supplementation may also prevent extraskeletal diseases such as respiratory tract infections, asthma exacerbations, pregnancy complications and premature deaths. Vitamin D has a unique metabolism as it is mainly obtained through synthesis in the skin under the influence of sunlight (i.e., ultraviolet-B radiation) whereas intake by nutrition traditionally plays a relatively minor role. Dietary guidelines for vitamin D are based on a consensus that serum 25-hydroxyvitamin D (25[OH]D) concentrations are used to assess vitamin D status, with the recommended target concentrations ranging from >= 25 to >= 50 nmol/L (>= 10->= 20 ng/mL), corresponding to a daily vitamin D intake of 10 to 20 mu g (400-800 international units). Most populations fail to meet these recommended dietary vitamin D requirements. In Europe, 25(OH)D concentrations <30 nmol/L (12 ng/mL) and <50 nmol/L (20 ng/mL) are present in 13.0 and 40.4% of the general population, respectively. This substantial gap between officially recommended dietary reference intakes for vitamin D and the high prevalence of vitamin D deficiency in the general population requires action from health authorities. Promotion of a healthier lifestyle with more outdoor activities and optimal nutrition are definitely warranted but will not erase vitamin D deficiency and must, in the case of sunlight exposure, be well balanced with regard to potential adverse effects such as skin cancer. Intake of vitamin D supplements is limited by relatively poor adherence (in particular in individuals with low-socioeconomic status) and potential for overdosing. Systematic vitamin D food fortification is, however, an effective approach to improve vitamin D status in the general population, and this has already been introduced by countries such as the US, Canada, India, and Finland. Recent advances in our knowledge on the safety of vitamin D treatment, the dose-response relationship of vitamin D intake and 25(OH)D levels, as well as data on the effectiveness of vitamin D fortification in countries such as Finland provide a solid basis to introduce and modify vitamin D food fortification in order to improve public health with this likewise cost-effective approach.Peer reviewe

    Three-year follow-up of serum 25-hydroxyvitamin D, parathyroid hormone, and bone mineral density in nursing home residents who had received 12 months of daily bread fortification with 125 μg of vitamin D3

    No full text
    Abstract Background We conducted a single-arm clinical trial in institutionalized seniors, on the effects of high-dose vitamin D3-fortified bread daily intake (clinicaltrials.gov registration NCT00789503). Methods At 1 and 3 years after the dietary fortification was stopped, serum 25-hydroxyvitamin D (25(OH)D), parathyroid hormone (PTH) and bone mineral density were measured in 23 of the original study subjects, aged 60-82 years who had consumed bread buns (100 g) fortified with 320 mg elemental calcium and 125 μg (5,000 IU) vitamin D3 daily for one year. Results At the end of the 1-year supplementation phase (receiving vitamin D3 fortified bread daily), mean (SD) serum 25(OH)D was 127.3 ± 37.8 nmol/L (baseline for this follow-up). At 1-year follow-up, the serum 25(OH)D was 64.9 ± 24.8 nmol/L (p = 0.001, vs. baseline); and at 3-year follow-up it was 28.0 ± 15.0 nmol/L (p = 0.001 vs. baseline). Serum PTH was 18.8 ± 15.6 pg/ml at baseline while at Year 3 it was 48.4 ± 18.4 pg/ml (p = 0.001 vs. baseline). Lumbar spine BMD did not change from baseline to Year 3. However, by Year 3, hip BMD had decreased (0.927 ± 0.130 g/cm2 vs. 0.907 ± 0.121 g/cm2, p = 0.024). Conclusion Vitamin D nutritional status exhibits a long half-life in the body, and a true steady-state plateau may not even be reached 1 year after a discontinuation in dose. Furthermore, once the need for vitamin D has been established, based on a low baseline serum 25(OH)D concentrations, the appropriate action is to maintain corrective vitamin D supplementation over the long term. Trial registration Clinical trial registration number: NCT0078950
    corecore