232 research outputs found

    Measuring the intelligence of an idealized mechanical knowing agent

    Get PDF
    We define a notion of the intelligence level of an idealized mechanical knowing agent. This is motivated by efforts within artificial intelligence research to define real-number intelligence levels of compli- cated intelligent systems. Our agents are more idealized, which allows us to define a much simpler measure of intelligence level for them. In short, we define the intelligence level of a mechanical knowing agent to be the supremum of the computable ordinals that have codes the agent knows to be codes of computable ordinals. We prove that if one agent knows certain things about another agent, then the former necessarily has a higher intelligence level than the latter. This allows our intelligence no- tion to serve as a stepping stone to obtain results which, by themselves, are not stated in terms of our intelligence notion (results of potential in- terest even to readers totally skeptical that our notion correctly captures intelligence). As an application, we argue that these results comprise evidence against the possibility of intelligence explosion (that is, the no- tion that sufficiently intelligent machines will eventually be capable of designing even more intelligent machines, which can then design even more intelligent machines, and so on)

    Aintegumenta and Aintegumenta-Like6 regulate auxin-mediated flower development in Arabidopsis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two related genes encoding AP2/ERF-type transcription factors, <it>AINTEGUMENTA </it>(<it>ANT</it>) and <it>AINTEGUMENTA-LIKE6 </it>(<it>AIL6</it>), are important regulators of floral growth and patterning in Arabidopsis. Evidence suggests that these genes promote several aspects of flower development in response to auxin. To investigate the interplay of <it>ANT</it>, <it>AIL6 </it>and auxin during floral development, I have examined the phenotypic consequences of disrupting polar auxin transport in <it>ant</it>, <it>ail6 </it>and <it>ant ail6 </it>mutants by either genetic or chemical means.</p> <p>Results</p> <p>Plants containing mutations in <it>ANT </it>or <it>AIL6 </it>alone or in both genes together exhibit increased sensitivity to disruptions in polar auxin transport. Both genes promote shoot growth, floral meristem initiation and floral meristem patterning in combination with auxin transport. However, differences in the responses of <it>ant </it>and <it>ail6 </it>single mutants to perturbations in auxin transport suggest that these two genes also have non-overlapping activities in each of these developmental processes.</p> <p>Conclusions</p> <p>The enhanced sensitivity of <it>ant </it>and <it>ail6 </it>mutants to alterations in polar auxin transport suggests that these mutants have defects in some aspect of auxin physiology. The inability of <it>ant ail6 </it>double mutants to initiate flowers in backgrounds disrupted for auxin transport confirm the proposed roles for these two genes in floral meristem initiation.</p

    Gender Separation Increases Somatic Growth in Females but Does Not Affect Lifespan in Nothobranchius furzeri

    Get PDF
    According to life history theory, physiological and ecological traits and parameters influence an individual's life history and thus, ultimately, its lifespan. Mating and reproduction are costly activities, and in a variety of model organisms, a negative correlation of longevity and reproductive effort has been demonstrated. We are employing the annual killifish Nothobranchius furzeri as a vertebrate model for ageing. N. furzeri is the vertebrate displaying the shortest known lifespan in captivity with particular strains living only three to four months under optimal laboratory conditions. The animals show explosive growth, early sexual maturation and age-dependent physiological and behavioural decline. Here, we have used N. furzeri to investigate a potential reproduction-longevity trade-off in both sexes by means of gender separation. Though female reproductive effort and offspring investment were significantly reduced after separation, as investigated by analysis of clutch size, eggs in the ovaries and ovary mass, the energetic surplus was not reallocated towards somatic maintenance. In fact, a significant extension of lifespan could not be observed in either sex. This is despite the fact that separated females, but not males, grew significantly larger and heavier than the respective controls. Therefore, it remains elusive whether lifespan of an annual species evolved in periodically vanishing habitats can be prolonged on the cost of reproduction at all

    Financial impact of reducing door-to-balloon time in ST-elevation myocardial infarction: a single hospital experience

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The impact of reducing door-to-balloon time on hospital revenues, costs, and net income is unknown.</p> <p>Methods</p> <p>We prospectively determined the impact on hospital finances of (1) emergency department physician activation of the catheterization lab and (2) immediate transfer of the patient to an immediately available catheterization lab by an in-house transfer team consisting of an emergency department nurse, a critical care unit nurse, and a chest pain unit nurse. We collected financial data for 52 consecutive ST-elevation myocardial infarction patients undergoing emergency percutaneous intervention from October 1, 2004–August 31, 2005 and compared this group to 80 consecutive ST-elevation myocardial infarction patients from September 1, 2005–June 26, 2006 after protocol implementation.</p> <p>Results</p> <p>Per hospital admission, insurance payments (hospital revenue) decreased (35,043±35,043 ± 36,670 vs. 25,329±25,329 ± 16,185, P = 0.039) along with total hospital costs (28,082±28,082 ± 31,453 vs. 18,195±18,195 ± 9,242, P = 0.009). Hospital net income per admission was unchanged (6962vs.6962 vs. 7134, P = 0.95) as the drop in hospital revenue equaled the drop in costs. For every 1000reductionintotalhospitalcosts,insurancepayments(hospitalrevenue)dropped1000 reduction in total hospital costs, insurance payments (hospital revenue) dropped 1077 for private payers and 1199forMedicare/Medicaid.Adecreaseinhospitalcharges(1199 for Medicare/Medicaid. A decrease in hospital charges (70,430 ± 74,033vs.74,033 vs. 53,514 ± 23,378,P=0.059),diagnosisrelatedgrouprelativeweight(3.7479±2.6731vs.2.9729±0.8545,P=0.017)andoutlierpaymentswithhospitalrevenue>23,378, P = 0.059), diagnosis related group relative weight (3.7479 ± 2.6731 vs. 2.9729 ± 0.8545, P = 0.017) and outlier payments with hospital revenue>100,000 (7.7% vs. 0%, P = 0.022) all contributed to decreasing ST-elevation myocardial infarction hospitalization revenue. One-year post-discharge financial follow-up revealed similar results: Insurance payments: 49,959±49,959 ± 53,741 vs. 35,937±35,937 ± 23,125, P = 0.044; Total hospital costs: 39,974±39,974 ± 37,434 vs. 26,778±26,778 ± 15,561, P = 0.007; Net Income: 9984vs.9984 vs. 9159, P = 0.855.</p> <p>Conclusion</p> <p>All of the financial benefits of reducing door-to-balloon time in ST-elevation myocardial infarction go to payers both during initial hospitalization and after one-year follow-up.</p> <p>Trial Registration</p> <p><b>ClinicalTrials.gov ID</b>: NCT00800163</p

    C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons.

    Get PDF
    Intronic hexanucleotide expansions in C9ORF72 are common in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, but it is unknown whether loss of function, toxicity by the expanded RNA or dipeptides from non-ATG-initiated translation are responsible for the pathophysiology. We determined the interactome of C9ORF72 in motor neurons and found that C9ORF72 was present in a complex with cofilin and other actin binding proteins. Phosphorylation of cofilin was enhanced in C9ORF72-depleted motor neurons, in patient-derived lymphoblastoid cells, induced pluripotent stem cell-derived motor neurons and post-mortem brain samples from ALS patients. C9ORF72 modulates the activity of the small GTPases Arf6 and Rac1, resulting in enhanced activity of LIM-kinases 1 and 2 (LIMK1/2). This results in reduced axonal actin dynamics in C9ORF72-depleted motor neurons. Dominant negative Arf6 rescues this defect, suggesting that C9ORF72 acts as a modulator of small GTPases in a pathway that regulates axonal actin dynamics

    Search for the standard model Higgs boson at LEP

    Get PDF

    Determinants of Natural Mating Success in the Cannibalistic Orb-Web Spider Argiope bruennichi

    Get PDF
    Monogynous mating systems (low male mating rates) occur in various taxa and have evolved several times independently in spiders. Monogyny is associated with remarkable male mating strategies and predicted to evolve under a male-biased sex ratio. While male reproductive strategies are well documented and male mating rates are easy to quantify, especially in sexually cannibalistic species, female reproductive strategies, the optimal female mating rate, and the factors that affect the evolution of female mating rates are still unclear. In this study, we examined natural female mating rates and tested the assumption of a male-biased sex ratio and female polyandry in a natural population of Argiope bruennichi in which we controlled female mating status prior to observations. We predicted variation in female mating frequencies as a result of spatial and temporal heterogeneity in the distribution of mature females and males. Females had a low average mating rate of 1.3 and the majority copulated only once. Polyandry did not entirely result from a male-biased sex-ratio but closely matched the rate of male bigamy. Male activity and the probability of polyandry correlated with factors affecting pheromone presence such as virgin females' density. We conclude that a strong sex ratio bias and high female mating rates are not necessary components of monogynous mating systems as long as males protect their paternity effectively and certain frequencies of bigyny stabilise the mating system

    Genetic Diversity and Population Structure of the Secondary Symbiont of Tsetse Flies, Sodalis glossinidius, in Sleeping Sickness Foci in Cameroon

    Get PDF
    Human African trypanosomiasis remains a threat to the poorest people in Africa. The trypanosomes causing the disease are transmitted by tsetse flies. The drugs currently used are unsatisfactory: some are toxic and all are difficult to administer. Furthermore, drug resistance is increasing. Therefore, investigations for novel disease control strategies are urgently needed. Previous analyses showed the association between the presence of Glossina symbiont, Sodalis glossinidius, and the fly infection by trypanosomes in a south-western region in Cameroon: flies harbouring symbionts had a threefold higher probability of being infected by trypanosomes than flies devoid of symbionts. But the study also showed substantial differences in S. glossinidius and trypanosome infection rates between Glossina populations from two Cameroonian foci of sleeping sickness. We hypothesized that the geographical isolation of the two foci may have induced the independent evolution of each one, leading to the diversification of symbiont genotypes. Microsatellite markers were used and showed that genetic diversity structuring of S. glossinidius varies at different geographical scales with a low but significant differentiation between the Campo and Bipindi HAT foci. This encourages further work on interactions between S. glossinidius subpopulations and Glossina species that could favor tsetse fly infections by a given trypanosome species

    Ejaculate Economics: Testing the Effects of Male Sexual History on the Trade-Off between Sperm and Immune Function in Australian Crickets

    Get PDF
    Trade-offs between investment into male sexual traits and immune function provide the foundation for some of the most prominent models of sexual selection. Post-copulatory sexual selection on the male ejaculate is intense, and therefore trade-offs should occur between investment into the ejaculate and the immune system. Examples of such trade-offs exist, including that between sperm quality and immunity in the Australian cricket, Teleogryllus oceanicus. Here, we explore the dynamics of this trade-off, examining the effects that increased levels of sexual interaction have on the viability of a male's sperm across time, and the concomitant effects on immune function. Males were assigned to a treatment, whereby they cohabited with females that were sexually immature, sexually mature but incapable of copulation, or sexually mature and capable of copulation. Sperm viability of each male was then assessed at two time points: six and 13 days into the treatment, and immune function at day 13. Sperm viability decreased across the time points, but only for males exposed to treatment classes involving sexually mature females. This decrease was similar in magnitude across both sexually mature classes, indicating that costs to the expression of high sperm viability are incurred largely through levels of pre-copulatory investment. Males exposed to immature females produced sperm of low viability at both time points. Although we confirmed a weak negative association between sperm viability and lytic activity (a measure of immune response to bacterial infection) at day 13, this relationship was not altered across the mating treatment. Our results highlight that sperm viability is a labile trait, costly to produce, and subject to strategic allocation in these crickets

    Ecological Implications of Extreme Events: Footprints of the 2010 Earthquake along the Chilean Coast

    Get PDF
    Deciphering ecological effects of major catastrophic events such as earthquakes, tsunamis, volcanic eruptions, storms and fires, requires rapid interdisciplinary efforts often hampered by a lack of pre-event data. Using results of intertidal surveys conducted shortly before and immediately after Chile's 2010 Mw 8.8 earthquake along the entire rupture zone (ca. 34–38°S), we provide the first quantification of earthquake and tsunami effects on sandy beach ecosystems. Our study incorporated anthropogenic coastal development as a key design factor. Ecological responses of beach ecosystems were strongly affected by the magnitude of land-level change. Subsidence along the northern rupture segment combined with tsunami-associated disturbance and drowned beaches. In contrast, along the co-seismically uplifted southern rupture, beaches widened and flattened increasing habitat availability. Post-event changes in abundance and distribution of mobile intertidal invertebrates were not uniform, varying with land-level change, tsunami height and coastal development. On beaches where subsidence occurred, intertidal zones and their associated species disappeared. On some beaches, uplift of rocky sub-tidal substrate eliminated low intertidal sand beach habitat for ecologically important species. On others, unexpected interactions of uplift with man-made coastal armouring included restoration of upper and mid-intertidal habitat seaward of armouring followed by rapid colonization of mobile crustaceans typical of these zones formerly excluded by constraints imposed by the armouring structures. Responses of coastal ecosystems to major earthquakes appear to vary strongly with land-level change, the mobility of the biota and shore type. Our results show that interactions of extreme events with human-altered shorelines can produce surprising ecological outcomes, and suggest these complex responses to landscape alteration can leave lasting footprints in coastal ecosystems
    corecore