62 research outputs found

    Clinical Relevance of Botulinum Toxin Immunogenicity

    Get PDF
    Botulinum toxin type A is a 150 kD protein produced by Clostridium botulinum, which exists in a complex with up to six additional proteins. The ability of botulinum toxin to inhibit acetylcholine release at the neuromuscular junction has been exploited for use in medical conditions characterized by muscle hyperactivity. As such, botulinum toxin is widely recommended by international treatment guidelines for movement disorders and it has a plethora of other clinical and cosmetic indications. The chronic nature of these conditions requires repeated injections of botulinum toxin, usually every few months. Multiple injections can lead to secondary treatment failure in some patients that may be associated with the production of neutralizing antibodies directed specifically against the neurotoxin. However, the presence of such antibodies does not always render patients non-responsive. The reported prevalence of immunoresistance varies greatly, depending on factors such as study design and treated indication. This review presents what is currently known about the immunogenicity of botulinum toxin and how this impacts upon patient non-response to treatment. The complexing proteins may act as adjuvants and stimulate the immune response. Their role and that of neutralizing and non-neutralizing antibodies in the response to botulinum toxin is discussed, together with an assessment of current neutralizing antibody measurement techniques. Botulinum toxin preparations with different compositions and excipients have been developed. The major commercially available preparations of botulinum toxin are Botox® (onabotulinumtoxinA; Allergan, Inc., Ireland), Dysport® (abobotulinumtoxinA; Ipsen Ltd, UK), and Xeomin® (incobotulinumtoxinA; botulinum toxin type A [150 kD], free from complexing proteins; NT 201; Merz Pharmaceuticals GmbH, Germany). The new preparations of botulinum toxin aim to minimize the risk of immunoresistance in patients being treated for chronic clinical conditions

    Repeated Intrathecal Triamcinolone Acetonide Administration in Progressive Multiple Sclerosis: A Review

    Get PDF
    At the present time, anti-inflammatory, immunomodulatory, or immunosuppressive treatments of multiple sclerosis (MS) are mainly effective in the early phases of the disease but are of less advantage in progressive phases. Current therapeutic strategies of both primary and secondary progressive MS are rare. One alternative may be intrathecal application of triamcinolone acetonide (TCA). Number of papers deal with advantages and disadvantages of intrathecal administration in MS. Former trials lacked detailed selection of MS patients, with small sample sizes, low steroid dosages, and only a small number of intrathecal administration of short acting steroids. The present paper summarizes recent trials performed following a different treatment regime. They were conducted in patients with progressive MS suffering mainly from spinal symptoms and documented a significant improvement of EDSS and walking distance (WD). Intrathecal TCA administration is a proposal to take into account as one therapy option in patients with a progressive clinical course and predominantly spinal symptoms

    Optimizing a Rodent Model of Parkinson's Disease for Exploring the Effects and Mechanisms of Deep Brain Stimulation

    Get PDF
    Deep brain stimulation (DBS) has become a treatment for a growing number of neurological and psychiatric disorders, especially for therapy-refractory Parkinson's disease (PD). However, not all of the symptoms of PD are sufficiently improved in all patients, and side effects may occur. Further progress depends on a deeper insight into the mechanisms of action of DBS in the context of disturbed brain circuits. For this, optimized animal models have to be developed. We review not only charge transfer mechanisms at the electrode/tissue interface and strategies to increase the stimulation's energy-efficiency but also the electrochemical, electrophysiological, biochemical and functional effects of DBS. We introduce a hemi-Parkinsonian rat model for long-term experiments with chronically instrumented rats carrying a backpack stimulator and implanted platinum/iridium electrodes. This model is suitable for (1) elucidating the electrochemical processes at the electrode/tissue interface, (2) analyzing the molecular, cellular and behavioral stimulation effects, (3) testing new target regions for DBS, (4) screening for potential neuroprotective DBS effects, and (5) improving the efficacy and safety of the method. An outlook is given on further developments of experimental DBS, including the use of transgenic animals and the testing of closed-loop systems for the direct on-demand application of electric stimulation

    A Randomized, Double Blind, Placebo-Controlled Trial of Pioglitazone in Combination with Riluzole in Amyotrophic Lateral Sclerosis

    Get PDF
    BACKGROUND: Pioglitazone, an oral anti-diabetic that stimulates the PPAR-gamma transcription factor, increased survival of mice with amyotrophic lateral sclerosis (ALS). METHODS/PRINCIPAL FINDINGS: We performed a phase II, double blind, multicentre, placebo controlled trial of pioglitazone in ALS patients under riluzole. 219 patients were randomly assigned to receive 45 mg/day of pioglitazone or placebo (one: one allocation ratio). The primary endpoint was survival. Secondary endpoints included incidence of non-invasive ventilation and tracheotomy, and slopes of ALS-FRS, slow vital capacity, and quality of life as assessed using EUROQoL EQ-5D. The study was conducted under a two-stage group sequential test, allowing to stop for futility or superiority after interim analysis. Shortly after interim analysis, 30 patients under pioglitazone and 24 patients under placebo had died. The trial was stopped for futility; the hazard ratio for primary endpoint was 1.21 (95% CI: 0.71-2.07, p = 0.48). Secondary endpoints were not modified by pioglitazone treatment. Pioglitazone was well tolerated. CONCLUSION/SIGNIFICANCE: Pioglitazone has no beneficial effects on the survival of ALS patients as add-on therapy to riluzole. TRIAL REGISTRATION: Clinicaltrials.gov NCT00690118

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    Get PDF
    Aims  The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results  Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion  After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p

    Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial

    Get PDF
    Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402

    Response to therapeutic plasma exchange as a rescue treatment in clinically isolated syndromes and acute worsening of multiple sclerosis: A retrospective analysis of 90 patients

    No full text
    Objectives: Experience with therapeutic plasma exchange (TPE) for acute relapses in clinically isolated syndrome (CIS) or multiple sclerosis (MS) patients has been derived from small and inhomogeneous patient populations so far. In the present study, we retrospectively evaluated features associated with TPE response in a larger cohort of CIS and MS patients with acute worsening of disease. Participants: Ninety CIS and MS patients with acute relapses or acute worsening of symptoms were firstly treated with TPE. The population consisted of 62 women and 28 men with a median age of 38 years (range 18-69 years). Outcome Measures: Primary endpoint was the clinical response to TPE, focused on the functional improvement of the target neurologic deficit. Secondary endpoint was an improvement in expanded disability status scale (EDSS) scoring. Results: A clinical response to TPE was observed in 65 out of 90 patients (72.2%), with marked improvement in 18 (20.0%) and moderate improvement in 47 out of 90 patients (52.2%). The median EDSS was reduced from 3.75 before to 3.0 after TPE (p = 0.001). Response to TPE was significantly more frequent in patients with relapsing courses of disease (CIS, RR-MS, p = 0.001), no disease modifying drugs (p = 0.017), gadolinium-positive (Gd+) MRI lesions (p = 0.001) and EDSS ≤ 5.0 before TPE (p = 0.014). In the multiple logistic regression analysis only the detection of Gd+ MRI lesions was significantly altered (p = 0.004). Conclusion: Clinical response to TPE was achieved in the majority of our patients. We identified clinical and diagnostic features in CIS and MS relapses that might be helpful to identify patients responding to TPE. Gd+ MRI lesions before treatment were the best predictor of the response to TPE in our cohort
    corecore