2,079 research outputs found

    Correction of diffraction effects in confocal raman microspectroscopy

    Get PDF
    A mathematical approach developed to correct depth profiles of wet-chemically modified polymer films obtained by confocal Raman microscopy is presented which takes into account scattered contributions originated from a diffraction-limited laser focal volume. It is demonstrated that the problem can be described using a linear Fredholm integral equation of the first kind which correlates apparent and true Raman intensities with the depth resolution curve of the instrument. The calculations of the corrected depth profiles show that considerable differences between apparent and corrected depth profiles exist at the surface, especially when profiles with strong concentration gradients are dealt with or an instrument with poor depth resolution is used. Degrees of modification at the surface obtained by calculation of the corrected depth profiles are compared with those measured by FTIR-ATR and show an excellent concordance.</p

    A new model for deflagration fronts in reactive fluids

    Full text link
    We present a new way of modeling deflagration fronts in reactive fluids, the main emphasis being on turbulent thermonuclear deflagration fronts in white dwarfs undergoing a Type Ia supernova explosion. Our approach is based on a level set method which treats the front as a mathematical discontinuity and allows full coupling between the front geometry and the flow field. With only minor modifications, this method can also be applied to describe contact discontinuities. Two different implementations are described and their physically correct behaviour for simple testcases is shown. First results of the method applied to the concrete problems of Type Ia supernovae and chemical hydrogen combustion are briefly discussed; a more extensive analysis of our astrophysical simulations is given in (Reinecke et al. 1998, MPA Green Report 1122b).Comment: 11 pages, 13 figures, accepted by A&A, corrected and extended according to referee's comment

    Carbon Ignition in Type Ia Supernovae: An Analytic Model

    Full text link
    The observable properties of a Type Ia supernova are sensitive to how the nuclear runaway ignites in a Chandrasekhar mass white dwarf - at a single point at its center, off-center, or at multiple points and times. We present a simple analytic model for the runaway based upon a combination of stellar mixing-length theory and recent advances in understanding Rayleigh-Benard convection. The convective flow just prior to runaway is likely to have a strong dipolar component, though higher multipoles may contribute appreciably at the very high Rayleigh number (1025^{25}) appropriate to the white dwarf core. A likely outcome is multi-point ignition with an exponentially increasing number of ignition points during the few tenths of a second that it takes the runaway to develop. The first sparks ignite approximately 150 - 200 km off center, followed by ignition at smaller radii. Rotation may be important to break the dipole asymmetry of the ignition and give a healthy explosion.Comment: 14 pages, 0 figures, submitted to ApJ, corrected typo in first author's nam

    A Conceptual Framework for B2B Electronic Contracting

    Get PDF
    Electronic contracting aims at improving existing business relationship paradigms and at enabling new forms of contractual relationships. To successfully realize these objectives, an integral understanding of the contracting field must be established. In this paper, we propose a conceptual framework for business-to-business contracting support. The framework provides a complete view over the contracting field. It allows positioning research efforts in the domain, analysing them, placing their goals into perspective, and overseeing future research topics and issues. It is the basis for drawing conclusions about basic requirements to contracting systems

    A whole farm model for quantifying total greenhouse gas emissions on South African dairy farms

    Get PDF
    This paper presents a model to quantify total greenhouse gas (GHG) emissions from dairy farms. The model, which is based on a whole farm management approach, accounts for the variability that occurs in GHG emissions among farm production and management practices. The variation is accommodated in six dairy farm management systems (FMS), which broadly include typical dairy production systems in South Africa. These are pasture-based with high or low stocking rates, total mixed ration with high or low stocking rates, and partial mixed ration with high or low stocking rates. Three variations of functional units that were used to evaluate the environmental impacts of various FMS are defined as per animal unit = kg CO2-eq head-1 yr-1; per unit of farm area = kg CO2-eq ha-1 yr-1, and per unit of product = kg CO2-eq kg FPCM-1, where FPCM is fat and protein corrected milk. The results show a range of GHG emissions in CO2-eq among the FMS with various methodological approaches because of the large impact from different emission factors, which vary between accounting methods. The more detailed equations were recommended to effectively improve environmental impacts. These more detailed non-linear equations tended to predict more biologically realistic emissions when compared with the linear equations in which over or under-predictions of GHG were observed. The most prominent drivers for GHG emissions across all FMS were from enteric methane (CH4) and nitrous oxide (N2O) from soil management. Rankings among FMS varied according to output methodology and functional units. GHG emissions expressed per animal or per unit area differ greatly from those expressed from a given level of product. In conclusion, the accounting methodologies that are described in this paper to predict GHG emissions of animal-related origin performed sufficiently across all FMS, and could be applied to quantify the carbon footprint of dairy production systems in South Africa.Keywords: Carbon dioxide equivalents, dairy production, methane, nitrous oxid

    Can Deflagration-Detonation-Transitions occur in Type Ia Supernovae?

    Get PDF
    The mechanism for deflagration-detonation-transition (DDT) by turbulent preconditioning, suggested to explain the possible occurrence of delayed detonations in Type Ia supernova explosions, is argued to be conceptually inconsistent. It relies crucially on diffusive heat losses of the burned material on macroscopic scales. Regardless of the amplitude of turbulent velocity fluctuations, the typical gradient scale for temperature fluctuations is shown to be the laminar flame width or smaller, rather than the factor of thousand more required for a DDT. Furthermore, thermonuclear flames cannot be fully quenched in regions much larger than the laminar flame width as a consequence of their simple ``chemistry''. Possible alternative explosion scenarios are briefly discussed.Comment: 8 pages, uses aastex; added references. Accepted by ApJ Letter

    Direct Numerical Simulations of Type Ia Supernovae Flames II: The Rayleigh-Taylor Instability

    Full text link
    A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed-burning regime, around densities of 10710^7 g/cc, through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long time scales. As the density is varied, we see a fundamental change in the character of the burning--at the low end of the density range the Rayleigh-Taylor instability dominates the burning, whereas at the high end the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition.Comment: submitted to ApJ, some figures degraded due to size constraint

    Aerothermodynamic radiation studies

    Get PDF
    We have built and made operational a 6 in. electric arc driven shock tube which alloys us to study the non-equilibrium radiation and kinetics of low pressure (0.1 to 1 torr) gases processed by 6 to 12 km/s shock waves. The diagnostic system allows simultaneous monitoring of shock radiation temporal histories by a bank of up to six radiometers, and spectral histories with two optical multi-channel analyzers. A data set of eight shots was assembled, comprising shocks in N2 and air at pressures between 0.1 and 1 torr and velocities of 6 to 12 km/s. Spectrally resolved data was taken in both the non-equilibrium and equilibrium shock regions on all shots. The present data appear to be the first spectrally resolved shock radiation measurements in N2 performed at 12 km/s. The data base was partially analyzed with salient features identified

    Nucleosynthesis in thermonuclear supernovae with tracers: convergence and variable mass particles

    Full text link
    Nucleosynthetic yield predictions for multi-dimensional simulations of thermonuclear supernovae generally rely on the tracer particle method to obtain isotopic information of the ejected material for a given supernova simulation. We investigate how many tracer particles are required to determine converged integrated total nucleosynthetic yields. For this purpose, we conduct a resolution study in the number of tracer particles for different hydrodynamical explosion models at fixed spatial resolution. We perform hydrodynamic simulations on a co-expanding Eulerian grid in two dimensions assuming rotational symmetry for both pure deflagration and delayed detonation Type Ia supernova explosions. Within a given explosion model, we vary the number of tracer particles to determine the minimum needed for the method to give a robust prediction of the integrated yields of the most abundant nuclides. For the first time, we relax the usual assumption of constant tracer particle mass and introduce a radially vary- ing distribution of tracer particle masses. We find that the nucleosynthetic yields of the most abundant species (mass fraction > 10E-5) are reasonably well predicted for a tracer number as small as 32 per axis and direction - more or less independent of the explosion model. We conclude that the number of tracer particles that were used in extant published works appear to have been sufficient as far as integrated yields are concerned for the most copiously produced nuclides. Additionally we find that a suitably chosen tracer mass distribution can improve convergence for nuclei produced in the outer layer of the supernova where the constant tracer mass prescription suffers from poor spatial resolution.Comment: 9 pages, 5 figures, accepted for publication in MNRA
    corecore