551 research outputs found

    On helium-dominated stellar evolution: the mysterious role of the O(He)-type stars

    Get PDF
    About a quarter of all post-asymptotic giant branch (AGB) stars are hydrogen-deficient. Stellar evolutionary models explain the carbon-dominated H-deficient stars by a (very) late thermal pulse scenario where the hydrogen-rich envelope is mixed with the helium-rich intershell layer. Depending on the particular time at which the final flash occurs, the entire hydrogen envelope may be burned. In contrast, helium-dominated post-AGB stars and their evolution are yet not understood. A small group of very hot, helium-dominated stars is formed by O(He)-type stars. We performed a detailed spectral analysis of ultraviolet and optical spectra of four O(He) stars by means of state-of-the-art non-LTE model-atmosphere techniques. We determined effective temperatures, surface gravities, and the abundances of H, He, C, N, O, F, Ne, Si, P, S, Ar, and Fe. By deriving upper limits for the mass-loss rates of the O(He) stars, we found that they do not exhibit enhanced mass-loss. The comparison with evolutionary models shows that the status of the O(He) stars remains uncertain. Their abundances match predictions of a double helium white dwarf merger scenario, suggesting that they might be the progeny of the compact and of the luminous helium-rich sdO-type stars. The existence of planetary nebulae that do not show helium enrichment around every other O(He) star, precludes a merger origin for these stars. These stars must have formed in a different way, for instance via enhanced mass-loss during their post-AGB evolution or a merger within a common-envelope (CE) of a CO-WD and a red giant or AGB star. A helium-dominated stellar evolutionary sequence exists, that may be fed by different types of mergers or CE scenarios. It appears likely, that all these pass through the O(He) phase just before they become white dwarfs.Comment: 29 pages, 27 figures, accepted for publication in A&

    The rapid evolution of the exciting star of the Stingray Nebula

    Get PDF
    SAO244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21kK in 1971 to over 50kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Fitting line profiles from static and expanding non-LTE model atmospheres to the observed UV and optical spectra, taken during 1988-2013, allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. We find that the central star has steadily increased its effective temperature from 38kK in 1988 to a peak value of 60kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log (dM/dt/Msun/yr)=-9.0 to -11.6 and the terminal wind velocity increased from 1800km/s to 2800km/s. Since around 2002, the star stopped heating and has cooled down again to 55kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. By comparison with stellar-evolution calculations, we confirm that SAO244567 must be a low-mass star (M < 0.55 Msun). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the observed fast evolution and the young planetary nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object. Alternatively, it could be the outcome of close-binary evolution. Then SAO244567 would be a low-mass (0.354 Msun) helium prewhite dwarf after the common-envelope phase, during which the planetary nebula was ejected.Comment: 16 pages, 13 figures, accepted for publication in A&

    Age Problem in the Holographic Dark Energy Model

    Full text link
    In this note, we test the original holographic dark energy model with some old high redshift objects. The main idea is very simple: the universe cannot be younger than its constituents. We find that the original holographic dark energy model can be ruled out, unless a lower Hubble constant is taken.Comment: 12 pages, 3 tables, 3 figures, revtex4; v2: accepted for publication in Phys. Rev. D; v3: published versio

    Sensors Best Paper Award 2015

    Get PDF
    Since 2011, an annual award system was instituted to recognize outstanding Sensors papers that are related to sensing technologies and applications and meet the aims, scope and high standards of this journal [1–4]. This year, the winners were chosen by the Section Editor-in-Chiefs of Sensors from among all the papers published in 2011 to track citations. Reviews and full research articles were considered separately. We gladly announce that the following eight papers were awarded the Sensors Best Paper Award in 2015

    Multimodal hyperscanning reveals that synchrony of body and mind are distinct in mother-child dyads

    Get PDF
    Hyperscanning studies have begun to unravel the brain mechanisms underlying social interaction, indicating a functional role for interpersonal neural synchronization (INS), yet the mechanisms that drive INS are poorly understood. The current study, thus, addresses whether INS is functionally-distinct from synchrony in other systems – specifically the autonomic nervous system and motor behavior. To test this, we used concurrent functional near-infrared spectroscopy - electrocardiography recordings, while N = 34 mother-child and stranger-child dyads engaged in cooperative and competitive tasks. Only in the neural domain was a higher synchrony for mother-child compared to stranger-child dyads observed. Further, autonomic nervous system and neural synchrony were positively related during competition but not during cooperation. These results suggest that synchrony in different behavioral and biological systems may reflect distinct processes. Furthermore, they show that increased mother-child INS is unlikely to be explained solely by shared arousal and behavioral similarities, supporting recent theories that postulate that INS is higher in close relationships

    Perspectives on the Use of Multiple Sclerosis Risk Genes for Prediction

    Get PDF
    Objective: A recent collaborative genome-wide association study replicated a large number of susceptibility loci and identified novel loci. This increase in known multiple sclerosis (MS) risk genes raises questions about clinical applicability of genotyping. In an empirical set we assessed the predictive power of typing multiple genes. Next, in a modelling study we explored current and potential predictive performance of genetic MS risk models. Materials and Methods: Genotype data on 6 MS risk genes in 591 MS patients and 600 controls were used to investigate the predictive value of combining risk alleles. Next, the replicated and novel MS risk loci from the recent and largest international genome-wide association study were used to construct genetic risk models simulating a population of 100,000 individuals. Finally, we assessed the required numbers, frequencies, and ORs of risk SNPs for higher discriminative accuracy in the future. Results: Individuals with 10 to 12 risk alleles had a significantly increased risk compared to individuals with the average population risk for developing MS (OR 2.76 (95% CI 2.02-3.77)). In the simulation study we showed that the area under the receiver operating characteristic curve (AUC) for a risk score based on the 6 SNPs was 0.64. The AUC increases to 0.66 using the well replicated 24 SNPs and to 0.69 when including all replicated and novel SNPs (n = 53) in the risk model. An additional 20 SNPs with allele frequency 0.30 and ORs 1.1 would be needed to increase the AUC to a slightly higher level of 0.70, and at least 50 novel variants with allele frequency 0.30 and ORs 1.4 would be needed to obtain an AUC of 0.85. Conclusion: Although new MS risk SNPs emerge rapidly, the discriminatory ability in a clinical setting will be limited

    On the Evolution of O(He)-Type Stars

    Get PDF
    O(He) stars represent a small group of four very hot post-AGB stars whose atmospheres are composed of almost pure helium. Their evolution deviates from the hydrogen-deficient post-AGO evolutionary sequence of carbon-dominated stars like e.g. PG 1159 or Wolf- Rayet stars. While (very) late thermal pulse evolutionary models can explain the observed He/C/O abundances in these objects, they do not reproduce He-dominated surface abundances. Currently it seems most likely that the O(He) stars originate from a double helium white dwarf merger and so they could be the successors of the luminous helium-rich sdO-stars. An other possibility is that O(He)-stars could be successors of RCB or EHe stars

    Tropomyosin Isoforms Specify Functionally Distinct Actin Filament Populations In Vitro

    Get PDF
    Actin filaments assemble into a variety of networks to provide force for diverse cellular processes [1]. Tropomyosins are coiled-coil dimers that form head-to-tail polymers along actin filaments and regulate interactions of other proteins, including actin-de polymerizing factor (ADF)/cofilins and myosins, with actin [2-5]. In mammals, >40 tropomyosin isoforms can be generated through alternative splicing from four tropomyosin genes. Different isoforms display non-redundant functions and partially non-overlapping localization patterns, for example within the stress fiber network [6, 7]. Based on cell biological studies, it was thus proposed that tropomyosin isoforms may specify the functional properties of different actin filament populations [2]. To test this hypothesis, we analyzed the properties of actin filaments decorated by stress-fiber-associated tropomyosins (Tpm1.6, Tpm1.7, Tpm2.1, Tpm3.1, Tpm3.2, and Tpm4.2). These proteins bound F-actin with high affinity and competed with a-actinin for actin filament binding. Importantly, total internal reflection fluorescence (TIRF) microscopy of fluorescently tagged proteins revealed that most tropomyosin isoforms cannot co-polymerize with each other on actin filaments. These isoforms also bind actin with different dynamics, which correlate with their effects on actin-binding proteins. The long isoforms Tpm1.6 and Tpm1.7 displayed stable interactions with actin filaments and protected filaments from ADF/cofilin-mediated disassembly, but did not activate non-muscle myosin Ila (NMIIa). In contrast, the short isoforms Tpm3.1, Tpm3.2, and Tpm4.2 displayed rapid dynamics on actin filaments and stimulated the ATPase activity of NMIla, but did not efficiently protect filaments from ADF/cofilin. Together, these data provide experimental evidence that tropomyosin isoforms segregate to different actin filaments and specify functional properties of distinct actin filament populations.Peer reviewe
    • …
    corecore