108 research outputs found

    Distribution of lead in single atmospheric particles

    Get PDF
    Three independent single particle mass spectrometers measured Pb in individual aerosol particles. These data provide unprecedented sensitivity and statistical significance for the measurement of Pb in single particles. This paper explores the reasons for the frequency of Pb in fine particles now that most gasoline is unleaded. Trace amounts of Pb were found in 5 to 25% of 250 to 3000 nm diameter particles sampled by both aircraft and surface instruments in the eastern and western United States. Over 5% of particles at a mountain site in Switzerland contained Pb. Particles smaller than 100 nm with high Pb content were also observed by an instrument that was only operated in urban areas. Lead was found on all types of particles, including Pb present on biomass burning particles from remote fires. Less common particles with high Pb contents contributed a majority of the total amount of Pb. Single particles with high Pb content often also contained alkali metals, Zn, Cu, Sn, As, and Sb. The association of Pb with Zn and other metals is also found in IMPROVE network filter data from surface sites. Sources of airborne Pb in the United States are reviewed for consistency with these data. The frequent appearance of trace Pb is consistent with widespread emissions of fine Pb particles from combustion sources followed by coagulation with larger particles during long-range transport. Industrial sources that directly emit Pb-rich particles also contribute to the observations. Clean regions of the western United States show some transport of Pb from Asia but most Pb over the United States comes from North American sources. Resuspension of Pb from soil contaminated by the years of leaded gasoline was not directly apparent

    Probing the Role of Magnetic-Field Variations in NOAA AR 8038 in Producing Solar Flare and CME on 12 May 1997

    Full text link
    We carried out a multi-wavelength study of a CME and a medium-size 1B/C1.3 flare occurring on 12 May 1997. We present the investigation of magnetic-field variations in the NOAA Active Region 8038 which was observed on the Sun during 7--16 May 1997. Analyses of H{\alpha} filtergrams and MDI/SOHO magnetograms revealed continual but discrete surge activity, and emergence and cancellation of flux in this active region. The movie of these magnetograms revealed two important results that the major opposite polarities of pre-existing region as well as in the emerging flux region (EFR) were approaching towards each other and moving magnetic features (MMF) were ejecting out from the major north polarity at a quasi-periodicity of about ten hrs during 10--13 May 1997. These activities were probably caused by the magnetic reconnection in the lower atmosphere driven by photospheric convergence motions, which were evident in magnetograms. The magnetic field variations such as flux, gradient, and sunspot rotation revealed that free energy was slowly being stored in the corona. The slow low-layer magnetic reconnection may be responsible for this storage and the formation of a sigmoidal core field or a flux rope leading to the eventual eruption. The occurrence of EUV brightenings in the sigmoidal core field prior to the rise of a flux rope suggests that the eruption was triggered by the inner tether-cutting reconnection, but not the external breakout reconnection. An impulsive acceleration revealed from fast separation of the H{\alpha} ribbons of the first 150 seconds suggests the CME accelerated in the inner corona, which is consistent with the temporal profile of the reconnection electric field. In conclusion, we propose a qualitative model in view of framework of a solar eruption involving, mass ejections, filament eruption, CME, and subsequent flare.Comment: 8 figures, accepted for publication in Solar Physic

    The Impact of New EUV Diagnostics on CME-Related Kinematics

    Get PDF
    We present the application of novel diagnostics to the spectroscopic observation of a Coronal Mass Ejection (CME) on disk by the Extreme Ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. We apply a recently developed line profile asymmetry analysis to the spectroscopic observation of NOAA AR 10930 on 14-15 December 2006 to three raster observations before and during the eruption of a 1000km/s CME. We see the impact that the observer's line-of-sight and magnetic field geometry have on the diagnostics used. Further, and more importantly, we identify the on-disk signature of a high-speed outflow behind the CME in the dimming region arising as a result of the eruption. Supported by recent coronal observations of the STEREO spacecraft, we speculate about the momentum flux resulting from this outflow as a secondary momentum source to the CME. The results presented highlight the importance of spectroscopic measurements in relation to CME kinematics, and the need for full-disk synoptic spectroscopic observations of the coronal and chromospheric plasmas to capture the signature of such explosive energy release as a way of providing better constraints of CME propagation times to L1, or any other point of interest in the heliosphere.Comment: Accepted to appear in Solar Physics Topical Issue titled "Remote Sensing of the Inner Heliosphere". Manuscript has 14 pages, 5 color figures. Movies supporting the figures can be found in http://download.hao.ucar.edu/pub/mscott/papers/Weathe

    New Physics Models of Direct CP Violation in Charm Decays

    Get PDF
    In view of the recent LHCb measurement of Delta A_CP, the difference between the time-integrated CP asymmetries in D --> K+K- and D --> pi+pi- decays, we perform a comparative study of the possible impact of New Physics degrees of freedom on the direct CP asymmetries in singly Cabibbo suppressed D meson decays. We systematically discuss scenarios with a minimal set of new degrees of freedom that have renormalizable couplings to the SM particles and that are heavy enough such that their effects on the D meson decays can be described by local operators. We take into account both constraints from low energy flavor observables, in particular D0-D0bar mixing, and from direct searches. While models that explain the large measured value for Delta A_CP with chirally enhanced chromomagnetic penguins are least constrained, we identify a few viable models that contribute to the D meson decays at tree level or through loop induced QCD penguins. We emphasize that such models motivate direct searches at the LHC.Comment: 24 pages, 13 figures. v2: typos corrected, reference added, published versio

    An Extreme Solar Event of 20 January 2005: Properties of the Flare and the Origin of Energetic Particles

    Full text link
    The extreme solar and SEP event of 20 January 2005 is analyzed from two perspectives. Firstly, we study features of the main phase of the flare, when the strongest emissions from microwaves up to 200 MeV gamma-rays were observed. Secondly, we relate our results to a long-standing controversy on the origin of SEPs arriving at Earth, i.e., acceleration in flares, or shocks ahead of CMEs. All emissions from microwaves up to 2.22 MeV line gamma-rays during the main flare phase originated within a compact structure located just above sunspot umbrae. A huge radio burst with a frequency maximum at 30 GHz was observed, indicating the presence of a large number of energetic electrons in strong magnetic fields. Thus, protons and electrons responsible for flare emissions during its main phase were accelerated within the magnetic field of the active region. The leading, impulsive parts of the GLE, and highest-energy gamma-rays identified with pi^0-decay emission, are similar and correspond in time. The origin of the pi^0-decay gamma-rays is argued to be the same as that of lower energy emissions. We estimate the sky-plane speed of the CME to be 2000-2600 km/s, i.e., high, but of the same order as preceding non-GLE-related CMEs from the same active region. Hence, the flare itself rather than the CME appears to determine the extreme nature of this event. We conclude that the acceleration, at least, to sub-relativistic energies, of electrons and protons, responsible for both the flare emissions and the leading spike of SEP/GLE by 07 UT, are likely to have occurred simultaneously within the flare region. We do not rule out a probable contribution from particles accelerated in the CME-driven shock for the leading GLE spike, which seemed to dominate later on.Comment: 34 pages, 14 Postscript figures. Solar Physics, accepted. A typo corrected. The original publication is available at http://www.springerlink.co

    What is the Nature of EUV Waves? First STEREO 3D Observations and Comparison with Theoretical Models

    Full text link
    One of the major discoveries of the Extreme ultraviolet Imaging Telescope (EIT) on SOHO were intensity enhancements propagating over a large fraction of the solar surface. The physical origin(s) of the so-called `EIT' waves is still strongly debated. They are considered to be either wave (primarily fast-mode MHD waves) or non-wave (pseudo-wave) interpretations. The difficulty in understanding the nature of EUV waves lies with the limitations of the EIT observations which have been used almost exclusively for their study. Their limitations are largely overcome by the SECCHI/EUVI observations on-board the STEREO mission. The EUVI telescopes provide high cadence, simultaneous multi-temperature coverage, and two well-separated viewpoints. We present here the first detailed analysis of an EUV wave observed by the EUVI disk imagers on December 07, 2007 when the STEREO spacecraft separation was 45\approx 45^\circ. Both a small flare and a CME were associated with the wave cadence, and single temperature and viewpoint coverage. These limitations are largely overcome by the SECCHI/EUVI observations on-board the STEREO mission. The EUVI telescopes provide high cadence, simultaneous multi-temperature coverage, and two well-separated viewpoints. Our findings give significant support for a fast-mode interpretation of EUV waves and indicate that they are probably triggered by the rapid expansion of the loops associated with the CME.Comment: Solar Physics, 2009, Special STEREO Issue, in pres

    Local and regional components of aerosol in a heavily trafficked street canyon in central London derived from PMF and cluster analysis of single-particle ATOFMS spectra.

    Get PDF
    Positive matrix factorization (PMF) has been applied to single particle ATOFMS spectra collected on a six lane heavily trafficked road in central London (Marylebone Road), which well represents an urban street canyon. PMF analysis successfully extracted 11 factors from mass spectra of about 700,000 particles as a complement to information on particle types (from K-means cluster analysis). The factors were associated with specific sources and represent the contribution of different traffic related components (i.e., lubricating oils, fresh elemental carbon, organonitrogen and aromatic compounds), secondary aerosol locally produced (i.e., nitrate, oxidized organic aerosol and oxidized organonitrogen compounds), urban background together with regional transport (aged elemental carbon and ammonium) and fresh sea spray. An important result from this study is the evidence that rapid chemical processes occur in the street canyon with production of secondary particles from road traffic emissions. These locally generated particles, together with aging processes, dramatically affected aerosol composition producing internally mixed particles. These processes may become important with stagnant air conditions and in countries where gasoline vehicles are predominant and need to be considered when quantifying the impact of traffic emissions.This is the author accepted manuscript. The final version is available via ACS at http://pubs.acs.org/doi/abs/10.1021/es506249z

    Has Behavioral Science Tumbled Through the Biological Looking Glass? Will Brief, Evidence-Based Training Return It From the Rabbit Hole?

    Get PDF
    Time constraints and professional demands leave practicing professionals unlikely to enroll in extended training such as a semester-long graduate course. Thus, the three-hour continuing education format has become a standard for those in practice. One may ask what sorts of training strategies optimize that format. To explore that, a three hour training program for seventy-six practicing mental health professionals, most of whom self-identified as psychologists, was devised. It made use of primarily antecedent techniques that have been shown to bring about changed perceptions on a number of topics. Content focused on two areas of importance to behavior analysts, the culture’s increasing acceptance of the biological causation model of disorders such as attentiondeficit hyperactivity disorder (ADHD), unipolar depression, anxiety disorders, and schizophrenia, and the field’s increasing reliance on medications, often to the exclusion of behavioral methods. Pre-post assessment showed that participants had changed their thinking regarding the two content areas. The authors caution that participants’ changed opinions may serve as setting events to changes in practice, but those changes are verbal. One must not assume changes in practice techniques will automatically occur

    Coronal Dimmings and the Early Phase of a CME Observed with STEREO and Hinode/EIS

    Full text link
    We investigate the early phase of the 13 February 2009 coronal mass ejection (CME). Observations with the twin STEREO spacecraft in quadrature allow us to compare for the first time in one and the same event the temporal evolution of coronal EUV dimmings, observed simultaneously on-disk and above the limb. We find that these dimmings are synchronized and appear during the impulsive acceleration phase of the CME, with the highest EUV intensity drop occurring a few minutes after the maximum CME acceleration. During the propagation phase two confined, bipolar dimming regions, appearing near the footpoints of a pre-flare sigmoid structure, show an apparent migration away from the site of the CME-associated flare. Additionally, they rotate around the 'center' of the flare site, i.e., the configuration of the dimmings exhibits the same 'sheared-to-potential' evolution as the postflare loops. We conclude that the motion pattern of the twin dimmings reflects not only the eruption of the flux rope, but also the ensuing stretching of the overlying arcade. Finally, we find that: (1) the global-scale dimmings, expanding from the source region of the eruption, propagate with a speed similar to that of the leaving CME front; (2) the mass loss occurs mainly during the period of strongest CME acceleration. Two hours after the eruption Hinode/EIS observations show no substantial plasma outflow, originating from the 'open' field twin dimming regions.Comment: accepted for publication in Solar Physic

    Risky business: factor analysis of survey data – assessing the probability of incorrect dimensionalisation

    Get PDF
    This paper undertakes a systematic assessment of the extent to which factor analysis the correct number of latent dimensions (factors) when applied to ordered categorical survey items (so-called Likert items). We simulate 2400 data sets of uni-dimensional Likert items that vary systematically over a range of conditions such as the underlying population distribution, the number of items, the level of random error, and characteristics of items and item-sets. Each of these datasets is factor analysed in a variety of ways that are frequently used in the extant literature, or that are recommended in current methodological texts. These include exploratory factor retention heuristics such as Kaiser’s criterion, Parallel Analysis and a non-graphical scree test, and (for exploratory and confirmatory analyses) evaluations of model fit. These analyses are conducted on the basis of Pearson and polychoric correlations.We find that, irrespective of the particular mode of analysis, factor analysis applied to ordered-categorical survey data very often leads to over-dimensionalisation. The magnitude of this risk depends on the specific way in which factor analysis is conducted, the number of items, the properties of the set of items, and the underlying population distribution. The paper concludes with a discussion of the consequences of overdimensionalisation, and a brief mention of alternative modes of analysis that are much less prone to such problems
    corecore