470 research outputs found

    Теория эффекта амальгамы аммония в методе АПН

    Get PDF

    Regulation of releasable vesicle pool sizes by protein kinase A-dependent phosphorylation of SNAP-25

    Get PDF
    AbstractProtein kinase A (PKA) is a key regulator of neurosecretion, but the molecular targets remain elusive. We combined pharmacological manipulations of kinase and phosphatase activities with mutational studies on the exocytotic machinery driving fusion of catecholamine-containing vesicles from chromaffin cells. We found that constitutive PKA activity was necessary to maintain a large number of vesicles in the release-ready, so-called primed, state, whereas calcineurin (protein phosphatase 2B) activity antagonized this effect. Overexpression of the SNARE protein SNAP-25a mutated in a PKA phosphorylation site (Thr-138) eliminated the effect of PKA inhibitors on the vesicle priming process. Another, unidentified, PKA target regulated the relative size of two different primed vesicle pools that are distinguished by their release kinetics. Overexpression of the SNAP-25b isoform increased the size of both primed vesicle pools by a factor of two, and mutations in the conserved Thr-138 site had similar effects as in the a isoform

    Compositional and functional stability of aerobic methane consuming communities in drained and rewetted peat meadows

    Get PDF
    The restoration of peatlands is an important strategy to counteract subsidence and loss of biodiversity. However, responses of important microbial soil processes are poorly understood. We assessed functioning, diversity and spatial organization of methanotrophic communities in drained and rewetted peat meadows with different water table management and agricultural practice. Results show that the methanotrophic diversity was similar between drained and rewetted sites with a remarkable dominance of the genus Methylocystis. Enzyme kinetics depicted no major differences, indicating flexibility in the methane (CH4) concentrations that can be used by the methanotrophic community. Short-term flooding led to temporary elevated CH4 emission but to neither major changes in abundances of methane-oxidizing bacteria (MOB) nor major changes in CH4 consumption kinetics in drained agriculturally used peat meadows. Radiolabeling and autoradiographic imaging of intact soil cores revealed a markedly different spatial arrangement of the CH4 consuming zone in cores exposed to near-atmospheric and elevated CH4. The observed spatial patterns of CH4 consumption in drained peat meadows with and without short-term flooding highlighted the spatial complexity and responsiveness of the CH4 consuming zone upon environmental change. The methanotrophic microbial community is not generally altered and harbors MOB that can cover a large range of CH4 concentrations offered due to water-table fluctuations, effectively mitigating CH4 emission

    Observation of Fluctuation-Dissipation-Theorem Violations in a Structural Glass

    Full text link
    The fluctuation-dissipation theorem (FDT), connecting dielectric susceptibility and polarization noise was studied in glycerol below its glass transition temperature Tg. Weak FDT violations were observed after a quench from just above to just below Tg, for frequencies above the alpha peak. Violations persisted up to 10^5 times the thermal equilibration time of the configurational degrees of freedom under study, but comparable to the average relaxation time of the material. These results suggest that excess energy flows from slower to faster relaxing modes.Comment: Improved discussion; final version to appear in Phys. Rev. Lett. 4 pages, 5 PS figures, RevTe

    CAPS1 Regulates Catecholamine Loading of Large Dense-Core Vesicles

    Get PDF
    SummaryCAPS1 is thought to play an essential role in mediating exocytosis from large dense-core vesicles (LDCVs). We generated CAPS1-deficient (KO) mice and studied exocytosis in a model system for Ca2+-dependent LDCV secretion, the adrenal chromaffin cell. Adult heterozygous CAPS1 KO cells display a gene dosage-dependent decrease of CAPS1 expression and a concomitant reduction in the number of docked vesicles and secretion. Embryonic homozygous CAPS1 KO cells show a strong reduction in the frequency of amperometrically detectable release events of transmitter-filled vesicles, while the total number of fusing vesicles, as judged by capacitance recordings or total internal reflection microscopy, remains unchanged. We conclude that CAPS1 is required for an essential step in the uptake or storage of catecholamines in LDCVs

    State Transfer Between a Mechanical Oscillator and Microwave Fields in the Quantum Regime

    Full text link
    Recently, macroscopic mechanical oscillators have been coaxed into a regime of quantum behavior, by direct refrigeration [1] or a combination of refrigeration and laser-like cooling [2, 3]. This exciting result has encouraged notions that mechanical oscillators may perform useful functions in the processing of quantum information with superconducting circuits [1, 4-7], either by serving as a quantum memory for the ephemeral state of a microwave field or by providing a quantum interface between otherwise incompatible systems [8, 9]. As yet, the transfer of an itinerant state or propagating mode of a microwave field to and from a mechanical oscillator has not been demonstrated owing to the inability to agilely turn on and off the interaction between microwave electricity and mechanical motion. Here we demonstrate that the state of an itinerant microwave field can be coherently transferred into, stored in, and retrieved from a mechanical oscillator with amplitudes at the single quanta level. Crucially, the time to capture and to retrieve the microwave state is shorter than the quantum state lifetime of the mechanical oscillator. In this quantum regime, the mechanical oscillator can both store and transduce quantum information

    Spire, an Actin Nucleation Factor, Regulates Cell Division during Drosophila Heart Development

    Get PDF
    The Drosophila dorsal vessel is a beneficial model system for studying the regulation of early heart development. Spire (Spir), an actin-nucleation factor, regulates actin dynamics in many developmental processes, such as cell shape determination, intracellular transport, and locomotion. Through protein expression pattern analysis, we demonstrate that the absence of spir function affects cell division in Myocyte enhancer factor 2-, Tinman (Tin)-, Even-skipped- and Seven up (Svp)-positive heart cells. In addition, genetic interaction analysis shows that spir functionally interacts with Dorsocross, tin, and pannier to properly specify the cardiac fate. Furthermore, through visualization of double heterozygous embryos, we determines that spir cooperates with CycA for heart cell specification and division. Finally, when comparing the spir mutant phenotype with that of a CycA mutant, the results suggest that most Svp-positive progenitors in spir mutant embryos cannot undergo full cell division at cell cycle 15, and that Tin-positive progenitors are arrested at cell cycle 16 as double-nucleated cells. We conclude that Spir plays a crucial role in controlling dorsal vessel formation and has a function in cell division during heart tube morphogenesis

    Spectral compression of single photons

    Full text link
    Photons are critical to quantum technologies since they can be used for virtually all quantum information tasks: in quantum metrology, as the information carrier in photonic quantum computation, as a mediator in hybrid systems, and to establish long distance networks. The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz for quantum-optical coherence tomography to 50 Hz for certain quantum memories. Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here we demonstrate bandwidth compression of single photons by a factor 40 and tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement and enables ultrafast timing measurements. It is a step toward arbitrary waveform generation for single and entangled photons.Comment: 6 pages (4 figures) + 6 pages (3 figures

    Spin-dependent transport in metal/semiconductor tunnel junctions

    Get PDF
    This paper describes a model as well as experiments on spin-polarized tunnelling with the aid of optical spin orientation. This involves tunnel junctions between a magnetic material and gallium arsenide (GaAs), where the latter is optically excited with circularly polarized light in order to generate spin-polarized carriers. A transport model is presented that takes account of carrier capture in the semiconductor surface states, and describes the semiconductor surface in terms of a spin-dependent energy distribution function. The so-called surface spin-splitting can be calculated from the balance of the polarized electron and hole flow in the semiconductor subsurface region, the polarized tunnelling current across the tunnel barrier between the magnetic material and the semiconductor surface, and the spin relaxation at the semiconductor surface. Measurements are presented of the circular-polarization-dependent photocurrent (the so-called helicity asymmetry) in thin-film tunnel junctions of Co/Al2O3/GaAs. In the absence of a tunnel barrier, the helicity asymmetry is caused by magneto-optical effects (magnetic circular dichroism). In the case where a tunnel barrier is present, the data cannot be explained by magneto-optical effects alone; the deviations provide evidence that spin-polarized tunnelling due to optical spin orientation occurs. In Co/τ-MnAl/AlAs/GaAs junctions no deviations from the magneto-optical effects are observed, most probably due to the weak spin polarization of τ-MnAl along the tunnelling direction; the latter is corroborated by bandstructure calculations. Finally, the application of photoexcited GaAs for spin-polarized tunnelling in a scanning tunnelling microscope is discussed.
    corecore