45 research outputs found

    Limited efficacy of APRIL CAR in patients with multiple myeloma indicate challenges in the use of natural ligands for CAR T-cell therapy

    Get PDF
    BACKGROUND: We used a proliferating ligand (APRIL) to construct a ligand-based third generation chimeric antigen receptor (CAR) able to target two myeloma antigens, B-cell maturation antigen (BCMA) and transmembrane activator and CAML interactor. METHODS: The APRIL CAR was evaluated in a Phase 1 clinical trial (NCT03287804, AUTO2) in patients with relapsed, refractory multiple myeloma. Eleven patients received 13 doses, the first 15×106 CARs, and subsequent patients received 75,225,600 and 900×106 CARs in a 3+3 escalation design. RESULTS: The APRIL CAR was well tolerated. Five (45.5%) patients developed Grade 1 cytokine release syndrome and there was no neurotoxicity. However, responses were only observed in 45.5% patients (1×very good partial response, 3×partial response, 1×minimal response). Exploring the mechanistic basis for poor responses, we then compared the APRIL CAR to two other BCMA CARs in a series of in vitro assays, observing reduced interleukin-2 secretion and lack of sustained tumor control by APRIL CAR regardless of transduction method or co-stimulatory domain. There was also impaired interferon signaling of APRIL CAR and no evidence of autoactivation. Thus focusing on APRIL itself, we confirmed similar affinity to BCMA and protein stability in comparison to BCMA CAR binders but reduced binding by cell-expressed APRIL to soluble BCMA and reduced avidity to tumor cells. This indicated either suboptimal folding or stability of membrane-bound APRIL attenuating CAR activation. CONCLUSIONS: The APRIL CAR was well tolerated, but the clinical responses observed in AUTO2 were disappointing. Subsequently, when comparing the APRIL CAR to other BCMA CARs, we observed in vitro functional deficiencies due to reduced target binding by cell-expressed ligand

    Gender differences in respiratory symptoms in 19-year-old adults born preterm

    Get PDF
    Objective: To study the prevalence of respiratory and atopic symptoms in (young) adults born prematurely, differences between those who did and did not develop Bronchopulmonary Disease (BPD) at neonatal age and differences in respiratory health between males and females. Methods: Design: Prospective cohort study. Setting: Nation wide follow-up study, the Netherlands. Participants: 690 adults (19 year old) born with a gestational age below 32 completed weeks and/or with a birth weight less than 1500g. Controls were Dutch participants of the European Community Respiratory Health Survey (ECRHS). Main outcome measures: Presence of wheeze, shortness of breath, asthma, hay fever and eczema using the ECRHS-questionnaire

    Heparan sulfate proteoglycans in the control of B cell development and the pathogenesis of multiple myeloma

    No full text
    Heparan sulfate proteoglycans (HSPGs) have essential functions during embryonic development and throughout postnatal life. To exert these functions, they undergo a series of processing reactions by heparan-sulfate-modifying enzymes (HSMEs), which endows them with highly modified heparan sulfate (HS) domains that provide specific docking sites for a large number of bioactive molecules. The development and antigen-dependent differentiation of normal B lymphocytes, as well as the growth and progression of B-lineage malignancies, are orchestrated by an array of growth factors, cytokines and chemokines many of which display HS binding. As discussed in this review, tightly regulated HSPG expression is a requirement for normal B cell maturation, differentiation and function. In addition, the HSPG syndecan-1 functions as a versatile co-receptor for signals from the bone marrow microenvironment, essential for the survival of long-lived plasma cells and multiple myeloma (MM) plasma cells. Targeting of HSMEs or HS chains on MM cells increases their sensitivity to drugs currently used in MM treatment, including bortezomib, lenalidomide or dexamethasone. Taken together, these findings render the HS biosynthetic machinery a promising target for MM treatmen

    Activation and effector functions of human RORC plus innate lymphoid cells

    No full text
    Innate lymphoid cells expressing the nuclear hormone receptor RORC have emerged as important players in human mucosal immunity. These cells combine innate modes of activation such as Toll-like receptor signaling with secretion of adaptive effector molecules including IL-2, BAFF and the Th17 cytokines IL-17 and IL-22. This endows these cells with the ability to rapidly respond to changes in cytokine milieu as well as changes in microbial composition and to affect both intestinal homeostasis and activation of adaptive immune cells

    A Reproducible Method for Isolation and In Vitro Culture of Functional Human Lymphoid Stromal Cells from Tonsils

    No full text
    The stromal compartment of secondary lymphoid organs is classicaly known for providing a mechanical scaffold for the complex interactions between hematopoietic cells during immune activation as well as for providing a niche which is favorable for survival of lymphocytes. In recent years, it became increasingly clear that these cells also play an active role during such a response. Currently, knowledge of the interactions between human lymphoid stroma and hematopoietic cells is still lacking and most insight is based on murine systems. Although methods to isolate stromal cells from tonsils have been reported, data on stability in culture, characterization, and functional properties are lacking. Here, we describe a reproducible and easy method for isolation and in vitro culture of functional human lymphoid stromal cells from palatine tonsils. The cells isolated express markers and characteristics of T cell zone fibroblastic reticular cells (FRCs) and react to inflammatory stimuli by upregulating inflammatory cytokines and chemokines as well as adhesion molecules, as previously described for mouse lymphoid stroma. Also, cultured tonsil stromal cells support survival of human innate lymphoid cells, showing that these stromal cells can function as bone fide FRCs, providing a favorable microenvironment for hematopoietic cells

    Overexpression of heparanase enhances T lymphocyte activities and intensifies the inflammatory response in a model of murine rheumatoid arthritis

    No full text
    Heparanase is an endo-glucuronidase that degrades heparan sulfate chains. The enzyme is expressed at a low level in normal organs; however, elevated expression of heparanase has been detected in several inflammatory conditions, e.g. in the synovial joints of rheumatoid arthritis (RA) patients. Herein, we have applied the model of collagen-induced arthritis (CIA) to transgenic mice overexpressing human heparanase (Hpa-tg) along with wildtype (WT) mice. About 50 % of the induced animals developed clinical symptoms, i.e. swelling of joints, and there were no differences between the Hpa-tg and WT mice in the incidence of disease. However, Hpa-tg mice displayed an earlier response and developed more severe symptoms. Examination of cells from thymus, spleen and lymph nodes revealed increased innate and adaptive immune responses of the Hpa-tg mice, reflected by increased proportions of macrophages, antigen presenting cells and plasmacytoid dendritic cells as well as Helios-positive CD4+ and CD8+ T cells. Furthermore, splenic lymphocytes from Hpa-tg mice showed higher proliferation activity. Our results suggest that elevated expression of heparanase augmented both the innate and adaptive immune system and propagated inflammatory reactions in the murine RA model

    Public health and clinical recommendations for physical activity and physical fitness : activity and physical fitness : special focus on overweight youth

    Get PDF
    The epimerization of glucuronic acid into iduronic acid adds structural variability to chondroitin/dermatan sulfate polysaccharides. Iduronic acid-containing domains play essential roles in processes such as coagulation, chemokine and morphogen modulation, collagen maturation, and neurite sprouting. Therefore, we generated and characterized, for the first time, mice deficient in dermatan sulfate epimerase 1 and 2, two enzymes uniquely involved in dermatan sulfate biosynthesis. The resulting mice, termed DKO mice, were completely devoid of iduronic acid, and the resulting chondroitin sulfate chains were structurally different from the wild type chains, from which a different protein binding specificity can be expected. As a consequence, a vast majority of the DKO mice died perinatally, with greatly variable phenotypes at birth or late embryological stages such as umbilical hernia, exencephaly and a kinked tail. However, a minority of embryos were histologically unaffected, with apparently normal lung and bone/cartilage features. Interestingly, the binding of the chemokine CXCL13, an important modulator of lymphoid organogenesis, to mouse DKO embryonic fibroblasts was impaired. Nevertheless, the development of the secondary lymphoid organs, including the lymph nodes and spleen, was normal. Altogether, our results indicate an important role of dermatan sulfate in embryological development and perinatal survival
    corecore