11 research outputs found

    Estudio de la infecciĂłn "Clostridium difficile": incidencia, epidemiologĂ­a, caracterĂ­sticas clĂ­nicas, factores de riesgo de gravedad y recurrencia

    Get PDF
    Clostridium difficile causes a broad range of diseases in humans, from mild colitis to pseudomembranous colitis and disease refractory to treatment, fulminant and fatal. It is an infection whose frequency, seriousness and related morbidity and mortality have increased in recent years [1-4]. Nowadays it is regarded as an emerging public health problem, and prevention and monitoring are particularly recommended. In recent years, different authors have described a change in its epidemiology, which affects not only the populations traditionally involved, but also children and patients from the community [2, 5]. Moreover, the Spanish situation has proven to be different, in terms of the ribotypes present, to other countries in Europe, Canada and the USA. Thus, the performance of an in-depth study in this type of patients in Spain, as well as the source of the acquisition of Clostridium difficile infection (CDI), is of major relevance. The main predisposing factor to acquiring CDI is the use of antibiotics in the previous 8 weeks (90% cases in some series), even with a single prophylactic dose. Other risk factors are a previous stay in health-care centers, particularly hospitals, being old and immunodepression, including transplantations and HIV [6]. The severity of CDI has been associated both with host factors and microorganism-specific factors..

    Characterization of the gut microbiome of patients with Clostridioides difficile infection, patients with non–C. difficile diarrhea, and C. difficile–colonized patients

    Get PDF
    IntroductionClostridioides difficile infection (CDI) is the main cause of nosocomial diarrhea in developed countries. A key challenge in CDI is the lack of objective methods to ensure more accurate diagnosis, especially when differentiating between true infection and colonization/diarrhea of other causes. The main objective of this study was to explore the role of the microbiome as a predictive biomarker of CDI.MethodsBetween 2018 and 2021, we prospectively included patients with CDI, recurrent CDI (R-CDI), non-CDI diarrhea (NO-CDI), colonization by C. difficile, and healthy individuals. Clinical data and fecal samples were collected. The microbiome was analyzed by sequencing the hypervariable V4 region of the 16S rRNA gene on an Illumina Miseq platform. The mothur bioinformatic pipeline was followed for pre-processing of raw data, and mothur and R were used for data analysis.ResultsDuring the study period, 753 samples from 657 patients were analyzed. Of these, 247 were from patients with CDI, 43 were from patients colonized with C. difficile, 63 were from healthy individuals, 324 were from NOCDI, and 76 were from R-CDI. We found significant differences across the groups in alpha and beta diversity and in taxonomic abundance. We identified various genera as the most significant biomarkers for CDI (Bacteroides, Proteus, Paraprevotella, Robinsoniella), R-CDI (Veillonella, Fusobacterium, Lactobacillus, Clostridium sensu stricto I), and colonization by C. difficile (Parabacteroides, Faecalicoccus, Flavonifractor, Clostridium XVIII).DiscussionWe observed differences in microbiome patterns between healthy individuals, colonized patients, CDI, R-CDI, and NOCDI diarrhea. We identified possible microbiome biomarkers that could prove useful in the diagnosis of true CDI infections. Further studies are warranted

    In vitro activity of ibrexafungerp and comparators against Candida albicans genotypes from vaginal samples and blood cultures

    Get PDF
    Objectives: Emergence of azole resistance may contribute to recurrences of vulvovaginal candidiasis. Thus, new drugs are needed to improve the therapeutic options. We studied the in vitro activity of ibrexafungerp and comparators against Candida albicans isolates from vaginal samples and blood cultures. Furthermore, isolates were genotyped to study compartmentalization of genotypes and the relationship between genotype and antifungal susceptibility. Methods: Candida albicans unique patient isolates (n ÂĽ 144) from patients with clinical suspicion of vulvovaginal candidiasis (n ÂĽ 72 isolates) and from patients with candidaemia (n ÂĽ 72) were studied. Antifungal susceptibility to amphotericin B, fluconazole, voriconazole, posaconazole, isavuconazole, clotrimazole, miconazole, micafungin, anidulafungin and ibrexafungerp was tested (EUCAST 7.3.2). Mutations in the erg11 gene were analysed and isolates genotyped. Results: Ibrexafungerp showed high activity (MICs from 0.03 mg/L to 0.25 mg/L) against the isolates, including those with reduced azole susceptibility, and regardless of their clinical source. Fluconazole resistance rate was 7% (n ÂĽ 5/72) and 1.4% (n ÂĽ 1/72) in vaginal and blood isolates, respectively. Some amino acid substitutions in the Erg11 protein were observed exclusively in phenotypically fluconazole non-wild type. Population structure analysis suggested two genotype populations, one mostly involving isolates from blood samples (66.3%) and the mostly from vaginal samples (69.8%). The latter group hosted all fluconazole non-wild-type isolates. Discussion: Ibrexafungerp shows good in vitro activity against Candida albicans from vaginal samples including phenotypically fluconazole non-wild-type isolates. Furthermore, we found a certain population structure where some genotypes show reduced susceptibility to fluconazol

    DataSheet_1_Characterization of the gut microbiome of patients with Clostridioides difficile infection, patients with non–C. difficile diarrhea, and C. difficile–colonized patients.pdf

    No full text
    IntroductionClostridioides difficile infection (CDI) is the main cause of nosocomial diarrhea in developed countries. A key challenge in CDI is the lack of objective methods to ensure more accurate diagnosis, especially when differentiating between true infection and colonization/diarrhea of other causes. The main objective of this study was to explore the role of the microbiome as a predictive biomarker of CDI.MethodsBetween 2018 and 2021, we prospectively included patients with CDI, recurrent CDI (R-CDI), non-CDI diarrhea (NO-CDI), colonization by C. difficile, and healthy individuals. Clinical data and fecal samples were collected. The microbiome was analyzed by sequencing the hypervariable V4 region of the 16S rRNA gene on an Illumina Miseq platform. The mothur bioinformatic pipeline was followed for pre-processing of raw data, and mothur and R were used for data analysis.ResultsDuring the study period, 753 samples from 657 patients were analyzed. Of these, 247 were from patients with CDI, 43 were from patients colonized with C. difficile, 63 were from healthy individuals, 324 were from NOCDI, and 76 were from R-CDI. We found significant differences across the groups in alpha and beta diversity and in taxonomic abundance. We identified various genera as the most significant biomarkers for CDI (Bacteroides, Proteus, Paraprevotella, Robinsoniella), R-CDI (Veillonella, Fusobacterium, Lactobacillus, Clostridium sensu stricto I), and colonization by C. difficile (Parabacteroides, Faecalicoccus, Flavonifractor, Clostridium XVIII).DiscussionWe observed differences in microbiome patterns between healthy individuals, colonized patients, CDI, R-CDI, and NOCDI diarrhea. We identified possible microbiome biomarkers that could prove useful in the diagnosis of true CDI infections. Further studies are warranted.</p

    Recommendations for the diagnosis and treatment of Clostridioides difficile infection: an official clinical practice guideline of the Spanish Society of Chemotherapy (SEQ), Spanish Society of Internal Medicine (SEMI) and the working group of Postoperative Infection of the Spanish Society of Anesthesia and Reanimation (SEDAR)

    No full text
    This document gathers the opinion of a multidisciplinary forum of experts on different aspects of the diagnosis and treatment of Clostridioides difficile infection (CDI) in Spain. It has been structured around a series of questions that the attendees considered relevant and in which a consensus opinion was reached. The main messages were as follows: CDI should be suspected in patients older than 2 years of age in the presence of diarrhea, paralytic ileus and unexplained leukocytosis, even in the absence of classical risk factors. With a few exceptions, a single stool sample is sufficient for diagnosis, which can be sent to the laboratory with or without transportation media for enteropathogenic bacteria. In the absence of diarrhoea, rectal swabs may be valid. The microbiology laboratory should include C. difficile among the pathogens routinely searched in patients with diarrhoea. Laboratory tests in different order and sequence schemes include GDH detection, presence of toxins, molecular tests and toxigenic culture. Immediate determination of sensitivity to drugs such as vancomycin, metronidazole or fidaxomycin is not required. The evolution of toxin persistence is not a suitable test for follow up. Laboratory diagnosis of CDI should be rapid and results reported and interpreted to clinicians immediately. In addition to the basic support of all diarrheic episodes, CDI treatment requires the suppression of antiperistaltic agents, proton pump inhibitors and antibiotics, where possible. Oral vancomycin and fidaxomycin are the antibacterials of choice in treatment, intravenous metronidazole being restricted for patients in whom the presence of the above drugs in the intestinal lumen cannot be assured. Fecal material transplantation is the treatment of choice for patients with multiple recurrences but uncertainties persist regarding its standardization and safety. Bezlotoxumab is a monoclonal antibody to C. difficile toxin B that should be administered to patients at high risk of recurrence. Surgery is becoming less and less necessary and prevention with vaccines is under research. Probiotics have so far not been shown to be therapeutically or preventively effective. The therapeutic strategy should be based, rather than on the number of episodes, on the severity of the episodes and on their potential to recur. Some data point to the efficacy of oral vancomycin prophylaxis in patients who reccur CDI when systemic antibiotics are required again

    Genotyping Reveals High Clonal Diversity and Widespread Genotypes of <i>Candida </i>Causing Candidemia at Distant Geographical Areas

    Get PDF
    The objectives of this study were to gain further insight on Candida genotype distribution and percentage of clustered isolates between hospitals and to identify potential clusters involving different hospitals and cities. We aim to genotype Candida spp. isolates causing candidemia in patients admitted to 16 hospitals in Spain, Italy, Denmark, and Brazil. Eight hundred and eighty-four isolates (Candida albicans, n = 534; C. parapsilosis, n = 282; and C. tropicalis, n = 68) were genotyped using species-specific microsatellite markers. CDC3, EF3, HIS3, CAI, CAIII, and CAVI were used for C. albicans, Ctrm1, Ctrm10, Ctrm12, Ctrm21, Ctrm24, and Ctrm28 for C. tropicalis, and CP1, CP4a, CP6, and B for C. parapsilosis. Genotypes were classified as singletons (genotype only found once) or clusters (same genotype infecting two or more patients). Clusters were defined as intra-hospital (involving patients admitted to a single hospital), intra-ward (involving patients admitted to the same hospital ward) or widespread (involving patients admitted to different hospitals). The percentage of clusters and the proportion of patients involved in clusters among species, genotypic diversity and distribution of genetic diversity were assessed. Seven hundred and twenty-three genotypes were detected, 78 (11%) being clusters, most of which (57.7%; n = 45/78) were intra-hospital clusters including intra-ward ones (42.2%; n = 19/45). The proportion of clusters was not statistically different between species, but the percentage of patients in clusters varied among hospitals. A number of genotypes (7.2%; 52/723) were widespread (found at different hospitals), comprising 66.7% (52/78) of clusters, and involved patients at hospitals in the same city (n = 21) or in different cities (n = 31). Only one C. parapsilosis cluster was a widespread genotype found in all four countries. Around 11% of C. albicans and C. parapsilosis isolates causing candidemia are clusters that may result from patient-to-patient transmission, widespread genotypes commonly found in unrelated patients, or insufficient microsatellite typing genetic discrimination

    European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults

    No full text
    Scope: In 2009, the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) published the first treatment guidance document for Clostridioides difficile infection (CDI). This document was updated in 2014. The growing literature on CDI antimicrobial treatment and novel treatment approaches, such as faecal microbiota transplantation (FMT) and toxin-binding monoclonal antibodies, prompted the ESCMID study group on C. difficile (ESGCD) to update the 2014 treatment guidance document for CDI in adults. Methods and questions: Key questions on CDI treatment were formulated by the guideline committee and included: What is the best treatment for initial, severe, severe-complicated, refractory, recurrent and multiple recurrent CDI? What is the best treatment when no oral therapy is possible? Can prognostic factors identify patients at risk for severe and recurrent CDI and is there a place for CDI prophylaxis? Outcome measures for treatment strategy were: clinical cure, recurrence and sustained cure. For studies on surgical interventions and severe-complicated CDI the outcome was mortality. Appraisal of available literature and drafting of recommendations was performed by the guideline drafting group. The total body of evidence for the recommendations on CDI treatment consists of the literature described in the previous guidelines, supplemented with a systematic literature search on randomized clinical trials and observational studies from 2012 and onwards. The Grades of Recommendation Assessment, Development and Evaluation (GRADE) system was used to grade the strength of our recommendations and the quality of the evidence. The guideline committee was invited to comment on the recommendations. The guideline draft was sent to external experts and a patients' representative for review. Full ESCMID endorsement was obtained after a public consultation procedure. Recommendations: Important changes compared with previous guideline include but are not limited to: metronidazole is no longer recommended for treatment of CDI when fidaxomicin or vancomycin are available, fidaxomicin is the preferred agent for treatment of initial CDI and the first recurrence of CDI when available and feasible, FMT or bezlotoxumab in addition to standard of care antibiotics (SoC) are preferred for treatment of a second or further recurrence of CDI, bezlotoxumab in addition to SoC is recommended for the first recurrence of CDI when fidaxomicinwas used to manage the initial CDI episode, and bezlotoxumab is considered as an ancillary treatment to vancomycin for a CDI episode with high risk of recurrence when fidaxomicin is not available. Contrary to the previous guideline, in the current guideline emphasis is placed on risk for recurrence as a factor that determines treatment strategy for the individual patient, rather than the disease severity. (C) 2021 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases

    <i>Candida</i> Genotyping of Blood Culture Isolates from Patients Admitted to 16 Hospitals in Madrid: Genotype Spreading during the COVID-19 Pandemic Driven by Fluconazole-Resistant <i>C. parapsilosis</i>

    No full text
    Background: Candidaemia and invasive candidiasis are typically hospital-acquired. Genotyping isolates from patients admitted to different hospitals may be helpful in tracking clones spreading across hospitals, especially those showing antifungal resistance. Methods: We characterized Candida clusters by studying Candida isolates (C. albicans, n = 1041; C. parapsilosis, n = 354, and C. tropicalis, n = 125) from blood cultures (53.8%) and intra-abdominal samples (46.2%) collected as part of the CANDIMAD (Candida in Madrid) study in Madrid (2019–2021). Species-specific microsatellite markers were used to define the genotypes of Candida spp. found in a single patient (singleton) or several patients (cluster) from a single hospital (intra-hospital cluster) or different hospitals (widespread cluster). Results: We found 83 clusters, of which 20 were intra-hospital, 49 were widespread, and 14 were intra-hospital and widespread. Some intra-hospital clusters were first detected before the onset of the COVID-19 pandemic, but the number of clusters increased during the pandemic, especially for C. parapsilosis. The proportion of widespread clusters was significantly higher for genotypes found in both compartments than those exclusively found in either the blood cultures or intra-abdominal samples. Most C. albicans- and C. tropicalis-resistant genotypes were singleton and presented exclusively in either blood cultures or intra-abdominal samples. Fluconazole-resistant C. parapsilosis isolates belonged to intra-hospital clusters harboring either the Y132F or G458S ERG11p substitutions; the dominant genotype was also widespread. Conclusions: the number of clusters—and patients involved—increased during the COVID-19 pandemic mainly due to the emergence of fluconazole-resistant C. parapsilosis genotypes
    corecore