7,393 research outputs found
Reflector antennas with low sidelobes, low cross polarization, and high aperture efficiency
Techniques are presented for computing the horn near field patterns on the subreflectors and for correcting the phase center errors of the horn pattern by shaping the subreflector surface. The diffraction pattern computations for scanned beams are described. The effects of dish aperture diffraction on pattern bandwidth are investigated. A model antenna consisting of a reflector, shaped subreflector, and corrugated feed horn is described
Recommended from our members
First CRDS-measurements of water vapour continuum in the 940nm absorption band
Measurements of near-infrared water vapour continuum using continuous wave cavity ring down spectroscopy (cw-
CRDS) have been performed at around 10611.6 and 10685:2 cm1. The continuum absorption coefficients for N2-
broadening have been determined for two temperatures and wavenumbers.
These results represent the first near-IR continuum laboratory data determined within the complex spectral environment in the 940nm water vapour band and are in reasonable agreement with simulations using the semiempirical CKD formulation
Generating business process recommendations with a population-based meta-heuristic
In order to provide both guidance and flexibility to users during process execution, recommendation systems have been proposed. Existing recommendation systems mainly focus on offering recommendation according to the process optimization goals (time, cost…). In this paper we offer a new approach that primarily focuses on maximizing the flexibility during execution. This means that by following the recommendations, the user retains maximal flexibility to divert from them later on. This makes it possible to handle (possibly unknown) emerging constraints during execution. The main contribution of this paper is an algorithm that uses a declarative process model to generate a set of imperative process models that can be used to generate recommendations
Investigating Differences between Graphical and Textual Declarative Process Models
Declarative approaches to business process modeling are regarded as well
suited for highly volatile environments, as they enable a high degree of
flexibility. However, problems in understanding declarative process models
often impede their adoption. Particularly, a study revealed that aspects that
are present in both imperative and declarative process modeling languages at a
graphical level-while having different semantics-cause considerable troubles.
In this work we investigate whether a notation that does not contain graphical
lookalikes, i.e., a textual notation, can help to avoid this problem. Even
though a textual representation does not suffer from lookalikes, in our
empirical study it performed worse in terms of error rate, duration and mental
effort, as the textual representation forces the reader to mentally merge the
textual information. Likewise, subjects themselves expressed that the graphical
representation is easier to understand
Temperature dependence of the diffuse scattering fine structure in equiatomic CuAu
The temperature dependence of the diffuse scattering fine structure from
disordered equiatomic CuAu was studied using {\it in situ} x-ray scattering. In
contrast to CuAu the diffuse peak splitting in CuAu was found to be
relatively insensitive to temperature. Consequently, no evidence for a
divergence of the antiphase length-scale at the transition temperature was
found. At all temperatures studied the peak splitting is smaller than the value
corresponding to the CuAuII modulated phase. An extended Ginzburg-Landau
approach is used to explain the temperature dependence of the diffuse peak
profiles in the ordering and modulation directions. The estimated mean-field
instability point is considerably lower than is the case for CuAu.Comment: 4 pages, 5 figure
Clinical Processes - The Killer Application for Constraint-Based Process Interactions?
For more than a decade, the interest in aligning information
systems in a process-oriented way has been increasing. To enable operational
support for business processes, the latter are usually specified in
an imperative way. The resulting process models, however, tend to be too
rigid to meet the flexibility demands of the actors involved. Declarative
process modeling languages, in turn, provide a promising alternative in
scenarios in which a high level of flexibility is demanded. In the scientific
literature, declarative languages have been used for modeling rather simple
processes or synthetic examples. However, to the best of our knowledge,
they have not been used to model complex, real-world scenarios
that comprise constraints going beyond control-flow. In this paper, we
propose the use of a declarative language for modeling a sophisticated
healthcare process scenario from the real world. The scenario is subject to
complex temporal constraints and entails the need for coordinating the
constraint-based interactions among the processes related to a patient
treatment process. As demonstrated in this work, the selected real process
scenario can be suitably modeled through a declarative approach.Ministerio de Economía y Competitividad TIN2016-76956-C3-2-RMinisterio de Economía y Competitividad TIN2015-71938-RED
Clusters, phason elasticity, and entropic stabilisation: a theory perspective
Personal comments are made about the title subjects, including: the relation
of Friedel oscillations to Hume-Rothery stabilisation; how calculations may
resolve the random-tiling versus ideal pictures of quasicrystals; and the role
of entropies apart from tile-configurational.Comment: IOP macros; 8pp, 1 figure. In press, Phil. Mag. A (Proc. Intl. Conf.
on Quasicrystals 9, Ames Iowa, May 2005
CPI-17 drives oncogenic Ras signaling in human melanomas via Ezrin-Radixin-Moesin family proteins
Hyperactive Ras signaling has strong oncogenic effects causing several different forms of cancer. Hyperactivity is frequently induced by mutations within Ras itself, which account for up to 30% of all human cancers. In addition, hyperactive Ras signaling can also be triggered independent of Ras by either mutation or by misexpression of various upstream regulators and immediate downstream effectors. We have previously reported that C-kinase potentiated protein phosphatase-1 inhibitor of 17 kDa (CPI-17) can drive Ras activity and promote tumorigenic transformation by inhibition of the tumor suppressor Merlin. We now describe an additional element of this oncogenic mechanism in the form of the ezrin-radixin-moesin (ERM) protein family, which exhibits opposing roles in Ras activity control. Thus, CPI-17 drives Ras activity and tumorigenesis in a two-fold way; inactivation of the tumor suppressor merlin and activation of the growth promoting ERM family. The in vivo significance of this oncogenic switch is highlighted by demonstrating CPI-17’s involvement in human melanoma pathogenesis
Absolute Frequency Measurements of the Hg^+ and Ca Optical Clock Transitions with a Femtosecond Laser
The frequency comb created by a femtosecond mode-locked laser and a
microstructured fiber is used to phase coherently measure the frequencies of
both the Hg^+ and Ca optical standards with respect to the SI second as
realized at NIST. We find the transition frequencies to be f_Hg=1 064 721 609
899 143(10) Hz and f_Ca=455 986 240 494 158(26) Hz, respectively. In addition
to the unprecedented precision demonstrated here, this work is the precursor to
all-optical atomic clocks based on the Hg^+ and Ca standards. Furthermore, when
combined with previous measurements, we find no time variations of these atomic
frequencies within the uncertainties of |(df_Ca/dt)/f_Ca| < 8 x 10^{-14}
yr^{-1}, and |(df_Hg/dt)/f_Hg|< 30 x 10^{-14} yr^{-1}.Comment: 6 pages, including 4 figures. RevTex 4. Submitted to Phys. Rev. Let
Phonon effects in molecular transistors: Quantum and classical treatment
We present a comprehensive theoretical treatment of the effect of
electron-phonon interactions in molecular transistors, including both quantal
and classical limits and we study both equilibrated and out of equilibrium
phonons. We present detailed results for conductance, noise and phonon
distribution in two regimes. One involves temperatures large as compared to the
rate of electronic transitions on and off the dot; in this limit our approach
yields classical rate equations, which are solved numerically for a wide range
of parameters. The other regime is that of low temperatures and weak
electron-phonon coupling where a perturbative approximation in the Keldysh
formulation can be applied. The interplay between the phonon-induced
renormalization of the density of states on the quantum dot and the
phonon-induced renormalization of the dot-lead coupling is found to be
important. Whether or not the phonons are able to equilibrate in a time rapid
compared to the transit time of an electron through the dot is found to affect
the conductance. Observable signatures of phonon equilibration are presented.
We also discuss the nature of the low-T to high-T crossover.Comment: 20 pages, 19 figures. Minor changes, version accepted for publication
in Phys. Rev.
- …
