
Generating Business Process
Recommendations with a Population-Based

Meta-Heuristic

Steven Mertens(&), Frederik Gailly, and Geert Poels

Department of Business Informatics and Operations Management,
Faculty of Economics and Business Administration, Ghent University,

Tweekerkenstraat 2, 9000 Ghent, Belgium
{steven.mertens,frederik.gailly,geert.poels}@ugent.be

Abstract. In order to provide both guidance and flexibility to users during
process execution, recommendation systems have been proposed. Existing
recommendation systems mainly focus on offering recommendation according
to the process optimization goals (time, cost…). In this paper we offer a new
approach that primarily focuses on maximizing the flexibility during execution.
This means that by following the recommendations, the user retains maximal
flexibility to divert from them later on. This makes it possible to handle (pos-
sibly unknown) emerging constraints during execution. The main contribution
of this paper is an algorithm that uses a declarative process model to generate a
set of imperative process models that can be used to generate recommendations.

Keywords: Business processes � Recommender systems � Declarative process
model � Run-time flexibility

1 Introduction

A business process is a set of one or more connected activities which collectively
realize a particular business goal [1]. These processes can be formally represented by
using one of numerous business process modelling languages (e.g., BPMN, UML,
BPEL, Petri-net…). Business process engines (BPE) offer support for the implemen-
tation of business processes by enabling the execution based on the respective process
model. They provide a software framework to handle human and non-human inter-
action and to ensure conformance with the specified process models.

In highly dynamic environments that need to offer high flexibility (e.g., hospitals and
personalized customer service departments) it is hard to find a single fitting process
model, and even more difficult to find an optimal one. There are many possible paths that
should be allowed and many, often complex, restrictions to keep in mind. As example,
consider the simplified case of a cancer treatment center for short stays (see Sect. 3 for
more details). In this environment a set of rules (e.g., the process starts when the
registration of the patient, a CT or MRI scan has to be directly followed by a doctor’s
visit…) and limitations (e.g., taking a strong painkiller means that a chemotherapy
session is no longer possible in the remainder of the process instance) apply. The order

© Springer International Publishing Switzerland 2015
F. Fournier and J. Mendling (Eds.): BPM 2014 Workshops, LNBIP 202, pp. 516–528, 2015.
DOI: 10.1007/978-3-319-15895-2_44

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55875552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of the activities for a certain process instance cannot be predetermined; instead it has to
be personalized according to the additional emergent constraints (e.g., the patient is
allergic to the painkiller) of the specific instance. For a doctor it can be difficult to
correctly apply all these rules (although in the simplified example this is manageable) on
specific variations of the process that possibly have been handled by other doctors up to
that point.

The resulting question is: how can business process engines offer support and
flexible assistance in this context? A differentiation has to be made between build-time
flexibility and run-time flexibility. The first is intrinsic to the created model, the latter is
the flexibility allowed by a process after being deployed [2].

An approach to add build-time flexibility to the process would be to create a model
that entails all possible paths. A first issue arising here is that the model would be very
big and complex making human understanding difficult. This is, however, not as much
of a problem when using business process engines, since human understanding isn’t
strictly necessary once the model is deployed. In addition, the size of the model can
also make the implementation of all paths significantly more time consuming. In static
environments this is not that important, but this step would have to be repeated on
regular basis in dynamic environments where the constraints change frequently.
Finally, a problem concerning the decisions emerges when increasing the number of
paths represented in the process model. It is one thing to allow many paths, another to
choose one for a specific instance of the process. This responsibility is shifted to the
process participants, because no information is offered on the advantages and/or dis-
advantages of choosing a certain option.

As stated in [3], there is an apparent paradox between providing guidance and
flexibility in how to proceed during process execution. Guidance is often thought of as
forcing the user in a certain direction. This can be countered by using a business
process engine offering recommendations to the users. A recommendation entails a
single activity or a set of parallel activities to be executed next based on a certain goal,
considering previously executed activities (i.e., a process instance that was started but
not completed yet) [4]. They are ordered based on criteria not necessarily visible to the
user. The user is encouraged to choose the ‘best’ recommendation, but is free to choose
another one based on the specific circumstances that apply (e.g., patient requests an
additional CT-scan before consenting with an operation). In the cancer treatment
center, it would be beneficial to have a system that makes these recommendations
based on the details of the specific case, while making sure that the next step is also
conformant with the process in general. The approach is similar to what a GPS-system
offers users compared to a street map. The GPS-system shows the user step by step how
to navigate to his destination. If the user chooses to diverge from the recommended
path, the GPS-system will offer an alternative optimized path based on its current
position, and thus based on the previous choices of the user. In the ideal situation it also
will not propose paths that are not possible (e.g., wrong way in a one-directional street).
This alleviates some of the responsibilities placed on the user, while offering flexibility
in the form of run-time flexibility. Similar recommendation systems have already been
proposed in [3–5]. In [3, 4] process mining techniques are used to calculate or estimate
the criteria (e.g., shortest duration, lowest cost…) to sort the recommendations.

Generating Business Process Recommendations 517



The approach of [5] uses constraint programming techniques to produce business
enactment plans, which are used to generate recommendations.

A common starting point for the systems in [3] and [5] is a declarative process
model (e.g., a Declare model [6]) as opposed to a specific imperative process model
(e.g., BPMN), just like a GPS-system internally uses a map combined with additional
information (e.g., on-way streets, traffic information…) and not one path. Declarative
process models [6] comprise a specification of the environment, its limitations and its
rules in terms of a set of constraints. This gives leeway to follow different paths and
avoids over-specification. When changes to the environment occur, the set of con-
straints is all that needs to be adjusted in the system itself. Imperative process models
on the other hand, represent the precise (often overspecified) control-flow of a business
process. They can still be used internally to generate possible valid paths based on the
declarative model, but they are not necessarily visible to users of the system (only
recommendations for the next step are visible).

A limitation of all three mentioned recommendation systems is that they only focus
on the direct optimization goals of the process. The systems are most suitable for
processes that require limited flexibility and variability. They generally assume the top
recommendation will be followed by the user. It is, however, possible that the choice to
initially follow an optimal path limits the freedom to diverge to other paths further
down the road. So in the context of a highly dynamic environment with high flexibility
needs, these systems will not produce the results we are looking for. The path they are
suggesting might be optimal at the time it is generated, but when the context changes
during the execution of the activities in that path, it might lose its optimal position.
Therefore, specifically for highly dynamic environments, we believe a technique to
generate robust process models (i.e., in a sense immune against bounded uncertainty) is
still missing.

The main contribution of this paper is thus to propose an alternative to the afore-
mentioned systems: a robust process engine that can deal with changes to its very
dynamic and complex environment at run-time. Hence, it has to try and find a balance
between the optimization goals of the process according to the current context and
maximizing the freedom to diverge from the recommended paths (e.g., because of
emergent constraints or requirements). We will primarily focus on the latter, offering
recommendations that allow the most flexibility in the later steps of the process. Also,
this indirectly entails checking the feasibility of possible next actions.

The novel idea is to use a population-based meta-heuristic for the generation of a
set of imperative process models based on a declarative model (e.g., Declare). In the
context of a very dynamic and complex environment that requires high flexibility, this
offers some interesting advantages. The most important advantage is that the technique
allows us to incorporate a new measure for run-time flexibility based on the population
kept. The measure provides an estimate of the run-time flexibility of a certain imper-
ative process model relative to the set of models in the population.

The remainder of this paper will first discuss the idea behind the proposed algo-
rithm as well as the actual implementation algorithm in Sect. 2. This is followed by a
short demonstration using the example of the cancer treatment center in Sect. 3.
In Sect. 4 we discuss an important optimization. Finally, a summary of the contribution
of this paper and further research will be presented in Sect. 5.

518 S. Mertens et al.



2 Solution Design

The developed population-based meta-heuristic takes its inspiration from nature and
more specific from the artificial immune system (AIS) [7], which in turn is based on the
vertebrate immune system. It is tasked with the protection of the organism from
malfunctioning cells in the body (e.g., cancers) and foreign diseases-causing elements,
called antigens. Two major groups of immune cells, called B-cells and T-cells, are
tasked with identifying and stopping antigens from going rampant through the body of
the organism. While being generally similar, they differ in how they recognize antigens.
The algorithm, described below, is based on the functioning of the B-cells.

The environment in which the AIS functions is very similar to the problem envi-
ronment described in the introduction of this paper. The solution space is also very
large and dynamic, which makes finding an optimal solution hard and one that stays
optimal in a changing environment impossible. This makes the AIS approach a great fit
for calculating recommendations in a very dynamic and complex environment that
requires high flexibility. The fact that the solution could be a suboptimum is not a big
problem in this context, as the focus is on providing a robust solution.

Figure 1 gives an overview of the proposed implementation. At the start a set of
random unique imperative process models, called the random population, is generated.
The only requirement for these models is that they are valid according to the set of
constraints contained by the declarative model. The initial population is created with
the best models (based on the fitness function discussed below) from the random
population. This initial population is sorted (again based on the fitness function) and
will then be used as input for the iterative steps of the algorithm: clonal selection,
mutation and selection. The three iterative steps, described below, will be executed
until the stop criteria are met (i.e., 100 iterations done or the average model fitness
score rises less than 1 % and drops less than 0.5 % over the last 5 iterations).

As mentioned before, the output of the algorithm is a ranked set of models, called
the result population. Initially, the result population is filled with the models from the
random population, removing those that are contained by one or more other models in
the result population. A model is contained by another model when the other model
allows everything that the first model allows and more. For example, the left model is
contained by the right in Fig. 2. New valid models generated in iterations are added to
the result population continuously. Every time new models are added, the result
population is sorted based on the fitness function. If the population gets bigger than its
specified maximal size, than the bottom models are removed to make it fit again.

Note that the proposed population-based meta-heuristic does not use recombina-
tion. The target environment is very complex, so finding new valid models starting
from the valid models in the random population is always going to be hard. However,
the chances of finding such a model are arguably higher when using a sequence of
mutations than by randomly combining two models. This is because mutations entail
relatively small changes to the model, whereas recombination is more disruptive. It is
thus a choice between incremental versus disruptive change. The disruptive character
of recombination offers as advantage a high diversity of models found. This is why it is
important to add random seeds from the random population to the edit population

Generating Business Process Recommendations 519



during iterations in the AIS technique. This ensures that new models are being searched
in all search directions, which means that diversity is also ensured provided that the
random population is in fact generated at random (special attention was paid to this in
the implementation of the proof of concept).

Clonal selection. The B-cells of the vertebrate immune system use receptor molecules
(i.e., antibodies), present on their surface, to bind with molecules covering the antigens
(i.e., epitopes). They are cloned proportional to the degree to which the B-cell can
recognize a certain antigen. The composition of the clone population (Fig. 1) tries to
mimic this. The best pclone percentage (e.g., 60 %) of models in the input population are
cloned and put in the clone population. To make this population the same size as the
input population, multiple clones of the same model are allowed. The fitness function
of a model determines the chance that that model is chosen to be duplicated in the clone
population (more than twice is possible).

Mutation (hypermutation). Random changes are made to the variable region of the
receptor molecules of B-cells. The higher the degree to which the B-cell can recognize
the target antigen, the lower the mutation rate and vice versa. Similarly, the models in
the clone population are mutated (see Table 1) and then added to the mutation pop-
ulation (Fig. 1). The amount of mutations per model is determined by its fitness score.
The models will be mutated at least once, possibly more. The chance that a model is
mutated more is inversely proportional to its fitness score.

Note that models in the mutation population are not necessarily valid. This is not a
problem because invalid models could become valid again after more mutations in

Fig. 1. Proposed artificial immune system implementation (based on Fig. 1 from [7])

Fig. 2. Illustration of contained (left) and containing (right) imperative models

520 S. Mertens et al.



subsequent iterations or are filtered out since they are assigned the minimal fitness
score of zero. All valid mutation found are also added to the result population. Like
before, all doubles and contained models are removed from the result population. It is
then sorted and the worst models are removed until the result population has again its
intended size.

Selection (receptor editing). The mutations to the cloned B-cells cause many to
become useless due to a bad combination of mutations. These non-functional B-cells
are removed from the population by a programmed cell death (i.e., apoptosis). The last
intermediate population, called the edit population (Fig. 1), does the same with the
models in the mutation population. It is partially filled with the best pedit percentage
(e.g., 50 %) of models from the mutation population (again, invalid models are pos-
sible). The remainder of the edit population is filled with randomly selected seed
models. Half of these seed models are taken from the random model, to keep searching
in all directions, and the other half from the result population, to possibly optimize
already found results.

Fitness function. The fitness function is used to estimate the value of an imperative
process model multiple times during each iteration of the algorithm. The absolute
fitness score of a model is not important; it is only of relative importance compared to
scores of the other models in the population during one execution. It would thus be
incorrect to directly compare the fitness scores of models from different executions of
the algorithm (even if they start from exactly the same declarative process model).
In this subsection we will discuss the three weighted components that are used: overall
completion time, build-time flexibility and run-time flexibility. The actual weights used

Table 1. The proposed set of mutations

Original Mutation
Activate empty transition
Remove active transition

Exclusive to parallel

Parallel to exclusive

Add exclusive to parallel

Add parallel to exclusive

Serial to exclusive

Serial to parallel

Generating Business Process Recommendations 521



in the proof of concept (see Sect. 3) are based on our perceived importance of each
subscore, respectively 20 % - 40 % - 40 %, but are still open for discussion based on
the specific application environment.

• Overall completion time: the optimization goal we have pursued in our current
implementation (but others can be used instead or in combination). It represents the
time needed to complete the whole process using this model. If each activity is
executed exactly once, then the overall completion time can easily be determined
exactly. But when other existence-templates of the Declare model are used, we can
only estimate how many times a certain activity will be executed. For example,
‘Existence3(A)’ specifies that activity A is executed at least 3 times with no upper
bound. Combining this with the given estimates of the duration of an activity (e.g.,
‘Duration(A) = 5’), an estimate of the completion time of the model can be cal-
culated. Since it is not always known exactly how many times an activity will be
executed, the variable bound (e.g., the 3 in Existence3) of the template will be used
as the number of times used in the estimation of the overall completion time.
Machine learning algorithms will be used to offer a better estimation in the final
system.

• Build-time flexibility: the inherent degree of flexibility of the model itself at build-
time, also known as the looseness of the model [2]. Processes with a high degree
of looseness are processes where the goal is known a priori, but a high degree of
freedom is given on how to achieve it. The respective score is determined by
counting the number of transitions from one activity to another allowed by the
model, divided by the total number of transitions allowed by the input declarative
model.

• As an example the left and right model from Fig. 2 will be scored in the context of a
declarative model allowing six transitions (start-A, start-B, A-B, A-end, B-A and
B-end). The left model has three transitions: start-A, A-B and B-end. This means
that the build-time flexibility score is 3/6. The right model on the other hand has a
build-time flexibility score of 5/6: start-A, start-B, A-B, A-end and B-end. This
reflects that in the left model allows only one path (e.g., start-A-B-end), whereas in
the right model three paths (e.g., also start-A-end and start-B-end) can be followed.

• Run-time flexibility: a property of a process instance according to [2]. In our case,
the process instance is actually a recommendation system based on a declarative
model. This is what is deployed, and thus, this is the context in which it has to be
measured. The flexibility offered by the system depends on the result population,
because only next steps contained by this population are sorted. The remaining
steps are still selectable (requiring recalculation to check feasibility and generate a
new result population), but not recommended. This means that run-time flexibility
is not scored on an individual model level like the previous two scores, but rather
relative to the models in the result population. Our proposition is to score the run-
time flexibility with two conflicting scores, so that a balance has to be reached.

When scoring a model compared to a model from the population, the first score
represents the number of activities at which one could switch to the other model,
divided by the total number of activities (defined in the input declarative model). It is
possible that for a certain activity some cases allow a switch and other cases don’t. If 0

522 S. Mertens et al.



represents a no scenario where no switch is possible and 1 represents that a switch is
always possible, then partial points represent the number of cases in which it is pos-
sible, relative to the all cases. The total aggregated score of a certain model compared
to the population allows us to valuate if the model can be used when diverging from
another model to this model, or when diverging from this model, there are other models
in the set that can be used.

It is important for the correct calculation of the first score that models that are
contained by other models are removed from the result population before evaluating
them based on this component. If not, it causes the component to estimate the value of
the models incorrectly. The scores of the containing and contained models will be
higher than they should be, because of the similarity between them, but have no real
value since switching between these models is pointless.

A limitation to the first score is that it has a preference for similar models with
different endings, since this allows the maximal amount of switching between them.
This means that certain variations at the beginning of the model will only have a small
chance to be in the population. To counteract this tendency, the second part of the run-
time flexibility score is inversely proportional to the frequency of transitions used in a
model compared to the population. This tends to equalize the diversity and thus bal-
ances out the total run-time flexibility score.

3 Demonstration

In this section, a brief demonstration of the recommendation system will be given.
The system itself has not been fully implemented yet, but the proposed algorithm1 has.
The demonstration will use the simplified cancer treatment center described in the
introduction. Patients initiate the process by registering at the reception. The next
activity is a doctor’s visit to evaluate what has to happen next (e.g., order scans,
operate…). The only other certainty is that the patient will have to unregister at the end.
The example environment is represented by the Declare model, with the given esti-
mates for the durations, described in Fig. 3. This model is complex enough to highlight
the basic aspects of the proposed recommendation system. This model is used as input
for the algorithm proposed in this paper. The result is a set of imperative models,
30 models in this case, that comply with the given declarative process model.

Based on the sorted set of models in the result population, a sorted set of recom-
mendations is created (see Table 2). This possibly leaves the user with one or more
possible next steps that are not present in any model in the result set (i.e., steps that
severely limit the flexibility later on). These are placed below the lowest recommen-
dation, as they are not really recommended, but could still be chosen in rare cases.
Impossible next steps are of course disregarded. Parallel next steps are currently not
supported by the recommendation system (but could possibly be in the result popu-
lation), so they will not be included in this demonstration. The first column of Table 2
contains the activity trace that is followed during this demonstration. A row contains

1 https://github.ugent.be/MIS/AIS_Population_RecommendationSystem/.

Generating Business Process Recommendations 523

https://github.ugent.be/MIS/AIS_Population_RecommendationSystem/


the enumeration of the possible next activities. The content of each box indicates if a
certain next activity is a recommendation or not at that time. Initially, only the first row
is given. The choice made then adds the chosen activity to the trace and a new row is
added with recommendations for the next step. The numbers represent the ranking of
the recommendations. A lower rank is preferred, while equal rank means that both next
steps are allowed by the same model. Unranked recommendations are marked with a
dash (-) and impossible next steps are marked with an X.

The process starts with two activities with no alternatives (and thus no other rec-
ommendations). The patient registers at the reception of the cancer treatment center and
then he is examined by the doctor. The doctor decides that a CT-scan is needed. He
thus follows one of the top recommendations. Right after the session, another exam-
ination is performed by the doctor to check if everything is in order. However, the

Duration(Register)=4, Duration(Unregister)=2, Duration(Scan MRI)=23, Duration(Scan CT)=17,

Duration(Operation)=90, Duration(Chemotherapy)=19, Duration(Weak Painkiller)=1, Duration(Strong Painkiller)=1, 

Duration(Anti-Nausea Drug)=1, Duration(Anti-Inflammatory Drug)=1, Duration(Doctor’s Visit)=10

Fig. 3. Example Declare model with given estimates of duration of each activity

Table 2. Example of an execution trace of the recommendation system.

R
egister

U
nregister

Scan M
R

I

Scan C
T

C
hem

otherapy

O
peration

W
eak

P
ainkiller

Strong

P
ainkiller

A
nti-N

ausea 

D
rug

A
nti-

Inflam
m

atory 

D
rug

D
octor’s V

isit

1 X X X X X X X X X X

X X X X X X X X X X 1

X 1 1 1 1 18 1 - 1 - 1

X X X X X X X X X X 1

X 1 1 1 1 18 1 - 1 - 1

X X X X X X X X X X 1

X 1 1 1 1 5 1 - - - 1

RECALCULATION

X 1 1 1 X 2 1 X 1 1 1

524 S. Mertens et al.



doctor notices that something is wrong and concludes that the patient needs instant
surgery. Even though this is not the top recommendation, another model in the pop-
ulation (ranked 18th of the 30 original models) does allow the next activity to be an
operation. The operation is successful and the doctor gives him a strong painkiller to
ease the pain. At this point, there is no model left in the population (as models are
removed that do not allow the current chosen activity trace) that allows the next activity
to be the prescription of a strong painkiller. This means that the algorithm has to
recalculate. After some time the patient feels ready to go home, so he goes back to the
reception and unregisters himself from the cancer treatment center. The newly calcu-
lated result population has this last step now as one of the top recommendations. This
step is also the end of the process.

4 Optimization Fitness Function

As was described before, the fitness function is an estimation of the value of a certain
model that can be used to compare models during one execution of the proposed
algorithm. It was also mentioned that models from the population contained by other
models from the population are removed, because they negatively impact the valuation
made by the fitness score. This, however, applies not only to containing models in
the population, but also containing models that have not been discovered yet. Theo-
retically, this has no effect on the outcome of the algorithm since contained models will
eventually be removed when the containing model is found. Nonetheless, in practice
processing time is limited and thus it is possible that they are never discovered. This
causes a systematic overestimation of the fitness score (as similarities between con-
tained models are high). Also, when a containing model is found, one or more models
are suddenly removed from the result population. This causes the average fitness score
to possibly rise or drop significantly based on the composition of the result population
as can be seen in Fig. 4 (between iteration 145 and 160 the population drops from 30 to
13, resulting in a big drop in the average fitness score). The other side effect is that
previously disregarded models now suddenly could have become relevant. These
models where however forgotten by the algorithm, so they have to be rediscovered,
slowing down the convergence (as it takes about 40 iterations to get back to 30 models
in the result population in Fig. 4).

An optimization step is proposed to handle the issue, which is executed before the
fitness scores are calculated. In this step an attempt is made to combine each pair of
models in the result population.2 If there exists a valid model containing both models, it
has to contain at least the union of both these models, since it is know that each model
in the result population is valid. So if the union is valid, a containing model of both
models has been found. This filters out all models contained by other models in the
population (as there union will be equal to the containing model from the population),
but it also discovers new models that contain one or more models in the population.

2 This is not the same as recombination, as the result is not a composition of smaller parts of each
model. The result is a model that contains both models fully.

Generating Business Process Recommendations 525



By repeating this step each time models are added to the result population, no sig-
nificant errors will be made during the valuation of the models. It also eliminates the
drops in size of the population, giving the average fitness score of the result population
a smoother progression during iterations (see Fig. 5).

Note that it is still possible that a certain model in the population is contained by
another valid model not in the population. This is not a problem because the fitness
scores will not be negatively influenced by this, since it concerns just one model in the
population. The containing model can be found with a certain combination of muta-
tions. At which point the containing model will just replace the contained model in the
result population. So similarities between multiple containing/contained models do not
come into play.

5 Conclusion

This paper presents a recommendation system based on an AIS algorithm to generate
imperative process models from a declarative model. In contrast to existing recom-
mendations systems, this one is made to thrive in dynamic and complex environments
with high flexibility needs. This requires a focus on the flexibility of a process
instead of just the optimization goals. This flexibility is divided along two dimensions:

Fig. 4. The effects of the systematic removal of intrapopulation contained models on size and
average fitness score (X-axis) of the result population during iterations (Y-axis).

Fig. 5. The size and average fitness score (X-axis) of the result population with the optimized
algorithm during iterations (Y-axis)

526 S. Mertens et al.



build-time and run-time. Build-time flexibility is an intrinsic property of a model,
which is measured by comparing the number of transitions allowed by the imperative
model to the number of possible transitions allowed by the declarative model. Run-time
flexibility is the flexibility allowed after deployment. A new measure of the run-time
flexibility was introduced, suited for this context and made possible by the proposed
algorithm. The proposed algorithm also has several other advantages:

– Instead of returning one optimal model to be used as recommendation, the proposed
algorithm returns a ranked set of models. This reduces the need to recalculate when
the user diverges from the top recommendation.

– The original result population will contain less valid models as execution progresses
because some models will become invalid by the choices made. A threshold can
be used to determine if the population has become too small relative to size of the
road ahead. Recalculations can be faster than normal calculations when using the
remaining valid (or even the invalid) models as start population (possibly supple-
mented with some newly generated models).

– Small changes to the environment (e.g., adjusting estimates for the duration of
activities) can often be handled by re-sorting the set of models. If there are still
enough valid models (based on a threshold mentioned above) in the set no recal-
culations are needed. When recalculations are needed, these will be faster
depending on how many valid models remained from the previous population.

This paper is only the starting point of this research. The idea for the robust and
recommendation-based process engine has been fully developed and its implementa-
tion has begun. An implementation of the algorithm has been made that proves its
usefulness, whereas the implementation of the recommendation system in a whole is
still a work in progress. But first off, a thorough evaluation of the implemented
algorithm is needed. This should reveal the optimal parameter values for the algorithm
(i.e., fitness function weights, population sizes…) generally or in specific cases. These
parameter values are also needed to allow a correct evaluation of the performance of the
algorithm. This can be combined with a theoretical comparison of the technique to
other techniques to determine its performance and usability. Additionally, an evalua-
tion in real life cases can provide clear guidelines for which situations tend to be most
suitable for using this technique. Finally, further research can also be done in how to
improve the technique by adding resource constraints and combining it with decision
models, machine learning techniques and/or process mining techniques.

References

1. Weske, M.: Business Process Management: Concepts, Methods, Technology. Springer, Berlin
(2007)

2. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems.
Springer, Heidelberg (2012)

3. Van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing
between flexibility and support. Comput. Sci. Dev. 23, 99–113 (2009)

Generating Business Process Recommendations 527



4. Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.: Supporting flexible
processes through recommendations based on history. In: Dumas, M., Reichert, M., Shan, M.-C.
(eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer, Heidelberg (2008)

5. Barba, I., Weber, B., Del Valle, C., Jiménez-Ramírez, A.: User recommendations for the
optimized execution of business processes. Data Knowl. Eng. 86, 61–84 (2013)

6. Goedertier, S., Vanthienen, J., Caron, F.: Declarative business process modelling: principles
and modelling languages. Enterp. Inf. Syst. 1–25 (2013)

7. Van Peteghem, V., Vanhoucke, M.: An artificial immune system for the multi-mode resource-
constrained project scheduling problem. In: Cotta, C., Cowling, P. (eds.) EvoCOP 2009.
LNCS, vol. 5482, pp. 85–96. Springer, Heidelberg (2009)

528 S. Mertens et al.


	Generating Business Process Recommendations with a Population-Based Meta-Heuristic
	Abstract
	1 Introduction
	2 Solution Design
	3 Demonstration
	4 Optimization Fitness Function
	5 Conclusion
	References


