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Abstract 

Measurements of near-infrared water vapour continuum using continuous wave cavity ring down 

spectroscopy (cw-CRDS) have been performed at around 110611.6cm−  and 110685.2cm− . The 

continuum absorption coefficients for N2-broadening have been determined to be 

( )296 24 2 1 11.0 0.2 10
F

KC cm molec atm− − −= ± ⋅  and ( )278 24 2 1 11.8 0.4 10K
FC cm molec atm− − −= ± ⋅  at 

110611.6cm− , and ( )296 24 2 1 11.6 0.5 10
F

KC cm molec atm− − −= ± ⋅  and 

( )278 24 2 1 12.1 0.4 10K
FC cm molec atm− − −= ± ⋅  at 10685.2  cm-1 respectively. 

These results represent the first near-IR continuum laboratory data determined within the 

complex spectral environment in the 940 nm water vapour band and are in reasonable agreement 

with simulations using the semiempirical CKD formulation.  
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1. Introduction 

The water vapour continuum (hereafter “continuum”) has received special attention after 

becoming necessary to explain the underestimation of the atmospheric absorption of solar energy 

by radiative transfer models and the observed correlation between excess absorption and water 

vapour amount [1]. These discrepancies indicate an inadequate model parameterisation of short-

wave atmospheric absorption by water vapour or by other absorbers correlating with water. The 

water continuum is generally accepted to be the component, which underlies the water lines 
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absorption. For the correct simulation of water absorption, a precise knowledge of the line shape 

is required. 

The theoretical research on water vapour line shapes have been summarised by Tipping and Ma 

[2]. A far wing line shape theory based on the binary collision and quasistatic approximations 

has been progressively developed and recently applied to calculate the frequency and 

temperature dependence of the continuous absorption coefficient [3-5]. Using adjustable 

intermolecular potential this theory provides a good agreement with middle and far IR 

measurements of the so called ‘out of band’ continuum but systematically underestimates ‘in 

band’ continuum absorption. One of the most widely used semiempirical approaches to define 

the continuum is the CKD formulation (Clough, Kneizys and Davis) and the code [6]. This 

approach applies a correction to account for effects of collision durations, and is constrained to 

provide best agreement with experimental results, though by using a few adjustable parameters 

which have no direct physical meaning. The recent versions of the CKD continuum model – 

CKD 2.4 [7] and MT_CKD [8] (see the code at http://rtweb.aer.com/continuum_frame.html) use 

some different physical interpretation and parameterisation of the continuum. Apart from far 

wing contribution of allowed transitions, postulated in the first CKD model [6] and being 

assumed now to be dominant in ‘out of band’ regions, a term supposed to account for absorption 

due to collision-induced transitions is included as dominating within water vapour bands. 

However, laboratory studies have traditionally focused on the atmospheric windows from 8 to 12 

µm, because of its importance in atmospheric radiative budget and due to the difficulties 

associated to accurate spectral determination of the continuum in the presence of strong 

absorption [2; 9-10]. Most continuum line shape models are based therefore on these 

experimental data, sometimes including data from microwave and 1200-2200 cm-1, but are 

applied in other spectral regions [11]. Thorough measurements of the near-IR continuum are 

therefore required to confirm the applicability of these models in the short-wave spectral regions. 

These results are also particularly important for satellite infrared remote sensing of atmospheric 

H2O profiles [12-13]. Some attempts to determine continuum from remote field measurements 
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[14-15] have been lately reported. However, the accurate determinations of water concentration 

and of possible interferences remain challenging aspects in the atmospheric measurements. 

Recently, cavity ring down spectroscopy (CRDS) has been used for the characterisation of the 

continuum in the mid-infrared region [16-17]. Aldener et al., [18] reported an upper value for the 

water vapour continuum [(9.2 ±0.2) x 10-27 cm2 molec-1] at 11500 cm-1 based on the estimated 

detection limit of a pulsed dye laser CRDS system. This threshold, however, is too high to be of 

any use for deriving the water continuum value in this spectral region. 

Reliable measurements of H2O continuum absorption coefficient in the visible (694 nm) have 

been recently made by Tikhomirov et al. [19]. The authors used the pulsed photoacoustic 

technique and obtained the value of H2O continuum absorption cross-section equal to 

(2.2±0.7)⋅10–26 cm2 molec–1 atm–1 near 14400 cm–1 at 295 K, which is 25% higher than the 

MT_CKD and 30% lower than the CKD-2.4 continuum model predictions for this spectral 

region. The older experiment by Fulghum and Tilleman [20] in the transparency window near 

9466 cm-1 presents 70% excess on the measured continuum over the modern MT_CKD model 

Finally an excess of the measured continuum absorption by a factor of approximately 1.5 over 

the CKD-2.4 model was also reported by Ptashnik et al [21], with the spectral feature of the 

residual attributed by the authors to water dimers. All these facts confirm the need for further 

near-IR experimental verification of the water vapour continuum models. 

Within the present study, measurements performed by continuous wave CRDS for the high 

accurate determination of water cross sections near 940 nm have been used for the water 

continuum retrieval. They constitute the first experimental data within this spectral range and are 

of interest to verify the value of the in-band continuum provided by available models. The data 

have been compared to the prediction of the CKD-2.4 [7] and MT_CKD [8] semiempirical 

continuum models, which are used for a number of atmospheric applications. 
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2. Experimental 

CRDS is a well established experimental technique for the measurement of molecular absorption 

spectra with a high requirement in sensitivity and spectral resolution [22-25].  

The optical system used in the present work is based upon the cw-CRDS scheme developed by 

Romanini et al. [25]. A radiation of single-mode diode laser is injected at a fixed frequency in a 

high finesse cavity. A piezoelectric transducer shifts precisely one of the cavity mirrors. In such 

a way, the cavity length is swept with a triangle modulation and enables the light passage 

through resonance, which occurs when the laser frequency coincides with one of the cavity 

modes. The modulation amplitude is chosen to be slightly more than λ/2, so that there is always 

a resonant cavity regardless of the laser frequency. For each resonant event, an Acousto-Optic 

Modulator (AOM) cuts off the light. The exponential decay of the intensity light leaking out the 

cavity is recorded and processed to determine the mode lifetime, the so called ring down time τ, 

strongly dependent on the molecular absorption inside the cavity, and the extinction coefficient 

of the molecular species of interest. 

Hence, by scanning the laser wavelength, absorption spectra of the species can be deduced by 

recording the CRDS signal. For a given concentration of the species of interest the quantitative 

determination of the absorption cross section is straightforward: 

 ( ) ( ) ( ) 0

1 1 1
i i

i
v n v

c v
α σ

τ τ
 

= × = ⋅ −∑   
 

, [2.1] 

where ( )vα  is the molecular absorption coefficient, in  and ( )i vσ  are respectively the 

concentration and the absorption cross section of the absorbing species at the frequency v , and 

τ0 is the ring down time of the empty cavity, i.e., the system baseline. According to [2.1], the 

absolute optical extinction coefficient of a given species can be determined from measurements 

of the cavity ring down time and the cavity baseline. 

The experimental set up will be described more in detail elsewhere [26]. It consists mainly of an 

optical and a sampling control unit, both optimised for the accurate dynamic measurement of 
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CRDS spectra at a large range of T, P and 
2H OP . Special attention is paid to the accurate 

measurement, control and stabilisation of each temperature, pressure and water vapour 

concentration. Therefore a dynamical measurement procedure is proposed to optimise the 

measurement of the τ0 base line absorption, of critical importance in the accuracy of CRDS 

spectroscopic determinations. Measuring dynamically a controlled gas flow prevents pressure 

drops or instability of the empty cavity losses during the filling of the sample, minimising the 

error in the τ0 determination. This τ0 is derived immediately before and/or after the measurement 

of the absorption line of interest by flowing through the cell N2 gas at the same P and T 

conditions as for the water vapour absorption measurement. Cormier et al. [17] have recently 

successfully used this method.  

The optical unit comprises the measurement cell, an external cavity tuneable diode laser (ECDL 

New Focus 6300, 12 mW, mode hop free 930-950 nm, 60 GHz scan window) a Faraday isolator, 

and a 1 GHz FSR Fabry-Perot Etalon to monitor the laser mode stability. Single mode optical 

cavity excitation is controlled using a piezo-actuator mounted on the end-out mirror. The CRDS 

signal is detected using a fast InGaS photodiode. 

The measurement cell consists of a quartz cylinder (1400 mm long; 50 mm inner diameter) 

specially designed to keep constant temperatures during the measurement: liquid ethanol flows 

through the inner jacket as a coolant, and the outer jacket is evacuated for thermal insulation. 

The optical cavity is defined by the mirrors of 5 m curvature and 0.99985 reflectivity, located 

within the isolation jacket to a length of 980 mm. During the measurement, N2 enriched with 

H2O vapour flows continuously through the measurement cell, which is kept at constant T and P 

conditions inside an isolation box. The temperature inside the cell is measured at three points by 

using platinum resistance thermometers Pt100, the pressure is monitored by using a capacitance 

gauge (MKS-Baratron), and the water vapour concentration determined by means of a relative 

humidity sensor (Vaisala-HMP 238). 
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The sampling control unit drives the mixing of dry and wet gas flows to get the required water 

vapour concentrations at defined P and T conditions. The 
2H OP  set value is controlled by a feed 

back loop calculating each second new values for the dry and wet flow to keep the water 

concentration in the cell and the total flow constant.  

The set up has a detection limit of 1x10-9 cm-1 Hz  and a relative frequency precision of 20 

MHz. 
2H Oσ  with accuracies lower than 2% can be determined within a large measurement range 

comprising 4 orders of magnitude (10-21-10-25 cm2 molec-1). 

3. Results and discussion  

Two weak lines (σΗ2Ο ~10-24 molec cm-2) in the proximity of strong absorptions and among the 

water vapour spectral lines pre-selected by ESA for the candidate mission WALES (Water 

Vapour Lidar Experiment in Space) [27] in the 10600-10700 cm-1 region were selected for high 

accurate determination of cross sections [26]. Figure 1 depicts the spectral environment of the 

absorption lines of interest, hereafter called L1 and L2. Several spectra (51 for L1 and 90 for L2) 

were taken at different T and P of atmospheric interest using the dynamical measurement 

procedure described above.  

Local spectral line absorption (initially, with 500 cm-1 line wings) was calculated with line-by 

line code of Mitsel’ et al. [28] using Voigt profile and reference line parameters from the 

HITRAN 2004 molecular database [29]. All the measured spectra, being in a good relative 

agreement with the calculation near the points of the highest absorption in L1 and L2 spectral 

regions, have shown, however, a distinct relative excess of the measured absorption upon the 

calculated one in the selected minima near 10611.6 cm-1 (or 10612.5 cm-1) and 10685.2 cm-1, 

which testifies in favour of the continuum nature of this extra-absorption. This result is in a good 

agreement with the numerical estimation of Ptashnik [30] of the most suitable intervals for 

continuum detection in this spectral region. In order to compare the retrieved continuum 

absorption with the CKD models, the CKD formulation for the continuum was used, i.e., the 
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local lines contribution (Voigt profile), calculated within 25 cm-1 for each line and reduced by 

the value of the “25cm-1 _basement”, was subtracted from the measured absorption [6]*.  

As the experiment is conducted with high purity nitrogen as carrier gas, and the broadening 

coefficients of HITRAN refer to air, the simulations must be accordingly corrected. The works 

reported by Malathy Devi et al. [31], Gasster et al. [32], Grossmann and Browell [33] and 

Mandin et al [34] indicate an air to nitrogen broadening ratio around 0.9. As this value is in 

agreement with some experiments performed in the spectral range of interest within this work, 

the HITRAN 2004 broadening coefficients were increased by 10% to carry out the simulations.  

The difference between measurement and simulation at the selected minima represents the water 

continuum at the corresponding frequencies. In order to minimise possible artefacts of 

measurement noise in the determination of the spectral position of the minimum, this is taken 

from the simulated spectrum, and for 21 values around this point in the measured spectrum the 

difference between measurement and simulation is calculated and subsequently averaged: 

 min 2 1

m
i

i m m
σσ

=−

=
+∑ , with 0 minσ σ=  and 10m = . [3.1] 

As mentioned above, the objective of the experiment was rather the highly accurate 

determination of cross sections of particular weak lines. Therefore, from the several spectra 

available at different P and T conditions only a few seem to fullfill the signal/noise requirements 

at the minimum for a suitable determination of the continuum. Two series of measurements at 

296 K and 278 K were selected. Water vapour pressures varied from 3 to 20 mbar and N2 

pressures from 100 to 1000 mbar.  

In order to compare with literature values, the formalism from Varanasi and Chudamani [35] has 

been adopted to represent the water vapour continuum absorption coefficient similarly to 

Cormier et al. [16-17]: 

 [ ]FFSSSC PTCPTCT ⋅+⋅⋅= ),(),(),( ννρνα ,    (cm-1) [3.2] 

                                                 
* The “25cm-1_basement” for each line is derived in the CKD approach as a value of the line absorption at the 
distance 25 cm-1 from the line centre. 
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leading to the continuum cross section: 

 FFSSC PTCPTCT ⋅+⋅= ),(),(),( νννσ ,     (cm2 molec-1) [3.3] 

or 

 )/(),(),(/),( SFFSSC PPTCTCPT ⋅+= νννσ .     (cm2 molec-1 atm-1) [3.4] 

Here ρS is the water vapor number density (in molec⋅cm-3), T is the temperature (in K), PS and PF 

the water and foreign gas (N2) partial pressure respectively (in atm), CS and CF (in cm2 molec-1 

atm-1) are the so called coefficients of self- and foreign-broadening respectively, or water-water 

and water-nitrogen continuum absorption coefficients. 

The CF and the CS coefficients are extracted from the cσ experimental data for the two spectral 

regions and the two temperature conditions on the basis of [3.3], by using a weighted least 

square fit algorithm.  

Figure 2 and 3 show the dependence of the experimentally obtained water continuum cross 

section, normalized by PS, on the PF/PS (see eq. [3.4]) at 296 K and 278K for νL1 and νL2. The 

intercept point with ordinate axis provides estimation for CS, while the slope of the dependence 

is equal to CF.  

The measurements at smallest foreign pressures (below 200 mbar) correspond to τ0 values 

subject to a higher statistical error than the other values (≈0.5%), indicating that even slight 

pressure variations and consequently, changes in the CRD resonator during the setting of the 

sampling and background measured conditions, have likely led to erroneous determination of the 

corresponding time constants. This confirms once more the importance of a flow CRDS 

experiment, as proposed here, for the accurate determination of cross-sections, being a crucial 

requirement in the case of in-band water continuum measurements. 

At a first glance, the change of the PS weighted total continuum cross-section σC / PS with the 

ratio P / PS in Fig. 2 corresponds to the one expected from theory and known from other 

experiments (i.e., gradually increase with P / PS, while the slope is stronger at lower 
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temperatures). Figure 3, however, shows two clear features. Firstly, there are two regimes for the 

datapoints at 296K, both having the same slope but different ordinate interceptions. The top 

regime is related to P>700mbar, the bottom one to P<600mbar. In the bottom regime PS is about 

4 mbar, in the top one either 4, 8 or 16 mbar. For this effect no other relation than the P variation 

can be found. Secondly, the top regime of the 296K datapoints seem to show the same 

dependency on the P / PS ratio as the datapoints at 278K, in contrast to their behaviour in Fig. 2 

and to the prediction of the continuum models. These anomalies exceed the expected 

contribution from possible errors and remained unexplained within this work. 

Table 1 and 2 show the values of the retrieved self- and foreign-broadened continuum 

coefficients in comparison to the values predicted by two latest versions of the CKD continuum 

model (CKD_2.4 and MT_CKD).  

As shown in the tables, the determined CF values are in a reasonable agreement with the values 

obtained from the CKD-2.4 or MT_CKD parameterisation. The negative CS values, without any 

physical meaning, are indicative of an insufficient variation in the water vapour partial pressure 

within the CRDS measurement data set to extract reasonable information for the self-continuum. 

As in the present study N2 pressure was mostly 100-200 times higher than the H2O pressure, the 

contribution of the self-continuum absorption (CS PS) to the cσ  should be a factor of 10 to 20 

smaller than the contribution of the foreign continuum† (CF PF). 

In addition, the CS and CF  parameters, derived from the joint fitting to the experimental data, 

were found to be strongly dependent (correlation coefficient -0,91 and -0,99 for the νL1 296K 

and 278K data sets respectively, and -0,96 for νL2 at both temperatures). Consequently, fixing the 

CS value during the fitting procedure should not lead to a very significant error in the retrieval of 

the CF coefficient. According to this, the data were reanalysed by fixing CS to a mean value 

between the CKD-2.4 and MT_CKD predictions, i.e., 23 2 1 11.27 10SC cm molec atm− − −= ⋅  (296K) and 

                                                 
† The very linear character of the cσ  (PH2O) dependence, detected by Tikhomirov et al. [19] in the 14400 cm-1 band 
for the water vapour pressures up to 15 mbar in mixture with 1000 mbar N2, confirms indirectly that the ratio CS/CF 
should not exceed the value of 10-15 within near-IR water vapour bands, similar to the result obtained by Burch [36] 
and by Tobin et al. [12] for mid-infrared in-band continuum. 
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23 2 1 11.70 10SC cm molec atm− − −= ⋅  (278K) for the νL1 region and 23 2 1 11, 4 10SC cm molec atm− − −= ⋅  

(296K) and 23 2 1 11.8 10SC cm molec atm− − −= ⋅  (278K) for the νL2 region. The new values obtained 

are included in the table 1 for comparison. 

In contrast to the statistical errors provided in the table 1 for the “joint fitting” case, which are 

obtained by Gaussian error calculation from the fitting procedure, the errors given in the last 

column of the table are rather estimated taking into account the possible impact of a 2% 

systematic error in the water vapour partial pressure. This may give a more realistic estimation 

than just statistical errors. As the contribution of the cσ to the total absorption at this frequency 

region is approximately 10%, a 2% error in the measured water vapour pressure and therefore in 

the total absorption is leading to an error of about 15-20% in the determined cσ  values. In 

addition, an assumed uncertainty of 50% in the fixed CS values taken from the models can also 

contribute up to 10-15% to the error in the final CF values. An additional error in the 296K νL2 

case is caused by the above mentioned anomaly in the / ( / )c S F SP P Pσ  dependence in the Fig. 3. 

Significant systematic error maybe caused also by uncertainty in spectral line parameters, which 

local contribution has to be subtracted when deriving the water continuum. Numerical 

estimation, made in [30] for the line parameters uncertainty in HITRAN-2004, gives the possible 

error in the retrieved continuum up to 20 and 40% respectively for the spectral regions νL1 and 

νL2. However, comparison of the measured and calculated spectra near the centres of the 

strongest lines under consideration allowed us to reduce the upper limit of possible uncertainty in 

the intensities and halfwidths of these lines as compared to HITRAN-2004, and so, to ensure the 

maximum impact of these uncertainties on the retrieved water continuum no higher than ∼15 and 

25% for νL1 and νL2 respectively. Assuming that all the discussed systematic errors are not 

correlated between each other, the final error, presented in the last column of the Table 2, is 

calculated as root-mean-square sum. 

The new CF values are in reasonable agreement with and seem to confirm the CKD models. 

However, the negative temperature dependence seems to be markedly stronger (from 1.5% (νL2) 
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to 3.2% (νL1) CF growth per 1K temperature fall) than the expected for the foreign continuum 

according to the CKD model prediction (0.3-0.4 percent/K), or the obtained by Cormier et al. 

[17] for the spectral region close to 944 cm-1 (about 1 percent/K). 

There are no other literature values available for direct comparison. Tipping and Ma [2] have 

calculated continuous absorption coefficients for frequencies up to 10000 cm-1. Concerning 

experimental results, only those of Sierk et al. [15], based on measurements of direct solar 

radiation during sunrise, correspond to the same spectral range. In spite of the uncertainties 

associated to this kind of measurements and to the retrieval within highly saturated bands, the 

spectral features, obtained by Sierk et al. [15], seem to agree with the CKD models. In contrast 

to our results, however, the continuum absorption retrieved in [15] is a factor of 1.5 and of 2 to 3 

lower than MT_CKD and CKD-2.4.1 models predictions respectively for 10611.6 cm-1 (942.4 

µm) and 10685.2 cm-1 (935.9 µm). 

4. Summary and conclusions  

The present work makes use of highly accurate cw-CRDS measurements of water vapour cross 

sections in the 940 nm water band to provide the first laboratory determination of the in-band 

water continuum at two different frequencies (10611.6 and 10685.2 cm-1) in the near-IR region. 

The experimental results indicate high accuracy requirements to the τ0 measurement for the 

continuum retrieval, and the high sensitivity of τ0 to slight variations in the pressure. As a 

consequence, only a few spectra taken at 296 and 278 K were suitable for this in band continuum 

determination. 

The obtained values of the foreign-continuum absorption agree reasonably with the results 

predicted by the recent versions of the CKD continuum model. However, the temperature 

dependence of the continuum seems to be overestimated. 

It is important to note that the total continuum, derived in this work as the difference between 

measured and simulated spectra, contributes only 10 to 15% to the total absorption in the 

investigated spectral regions. Consequently, even small errors in the reference line parameters of 
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strong absorption lines in the close spectral vicinity and/or in the measured water vapour partial 

pressure can lead to significant errors in the retrieved value of the total continuum. In addition, 

for the water vapour pressures used in this work, the self-continuum in our estimations 

represented no more than 1% of the total absorption, which prevented its correct retrieval.  

The potential presence of the overtone water dimer absorption band, centred near 10605 cm-1, as 

predicted in Schoefield and Kjaergaard [37] in ab-initio calculations, would be directly reflected 

in a higher CS value in the 1Lν spectral region. Since the CS values in the present work were fixed 

to their CKD estimation during CF retrieval, which does not account for the dimer formation, the 

self-continuum contribution to the total continuum might be underestimated, and consequently 

the CF values overestimated. This effect would be more significant at lower temperatures 

according to the expected exponential decrease of the equilibrium constant with the temperature 

[36]. This might partially explain the stronger CF temperature dependence observed. 

Further experimental and theoretical investigations are required. 
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Figure captions 

 

Figure 1. Spectral environment used for the determination of the water continuum. L1 and L2 are the 

weak lines investigated. The measurement wavenumber range is indicated between vertical bars. Solid 

lines show the local line absorption, calculated with Voigt profile (500 cm-1 wings). Dotted lines 

designate continuum absorption predicted by MT_CKD model. Calculations are made for PN2= 1013 

mbar and T=296K   

Figure 2: Variation of the experimental water continuum cross section Cσ  on the foreign pressure FP  

(normalised on SP ) around 10611.6 cm-1 (νL1) at different temperatures. 

Figure 3: Variation of the experimental water continuum cross section Cσ  on the foreign pressure FP  

(normalised on SP ) around 10685.2 cm-1 (νL2) at different temperatures. 

 

 

Table captions 

 

Table 1. Foreign-broadened continuum absorption coefficients CF (10-24 cm2molec-1atm-1) according to 

the recent CKD models and derived in this work. (See text for details). 

 

Table 2. Self-broadened continuum absorption coefficients CS (10-23 cm2molec-1atm-1) according to the 

recent CKD models and derived in this work. 
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ν [cm-1]  T [K] CKD-2.4 MT_CKD Obtained from 

CF  and CS joint fitting(*)  

(this work) 

Obtained at 

fixed CS 

(this work) 

296 1.33 1.23 0.85±0.05 1.0±0.2 10611,6 

278 1.40 1.32 2.0±0.3 1.8±0.4 

296 2.17 1.53 2.1±0.1 1.6±0.5 10685.2 

278 2.30 1.63 1.9±0.1 2.1 ±0.4 

  (*) Possible systematic errors are not included. 

Table 1 
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ν [cm-1] T [K] CKD-2.4 MT_CKD Obtained from 

CF and CS joint 

fitting(*)  

(this work) 

296 1.09 1.45 3.6 ± 0.6 10611.6 

278 1.46 1.95 -2 ± 5 

296 1.60 1.21 -4.8 ± 0.9 10685.2 

278 2.12 1.62 6.2 ± 1,8 

         (*) Possible systematic errors are not included. 

Table 2 

 

 


