1,871 research outputs found
Traffic jams induced by rare switching events in two-lane transport
We investigate a model for driven exclusion processes where internal states are assigned to the particles. The latter account for diverse situations, ranging from spin states in spintronics to parallel lanes in intracellular or vehicular traffic. Introducing a coupling between the internal states by allowing particles to switch from one to another induces an intriguing polarization phenomenon. In a mesoscopic scaling, a rich stationary regime for the density profiles is discovered, with localized domain walls in the density profile of one of the internal states being feasible. We derive the shape of the density profiles as well as resulting phase diagrams analytically by a mean-field approximation and a continuum limit. Continuous as well as discontinuous lines of phase transition emerge, their intersections induce multi-critical behaviour
Range limitation of the Peaks of Otter salamander (Plethodon hubrichti) due to competition with the eastern red-backed salamander (Plethodon cinereus) in sympatry
The Peaks of Otter salamander, Plethodon hubrichti, is a montane species found at altitudes above 442 m within a 117 km2 area of the Blue Ridge Mountains in central Virginia, USA. In areas where this species is sympatric with the eastern red-backed salamander (Plethodon cinereus) it seemed likely that P. hubrichti populations were either depressed or eliminated. The habitability of areas beyond the current range boundaries for P. hubrichti is supported by several disjunct populations in areas sympatric with P. cinereus. From 2009 to 2012 we tested whether P. hubrichti was negatively impacted by competition with P. cinereus by removing P. cinereus from treatment plots at three sympatric field locations. The number of surface-active (SA) P. hubrichti increased significantly more on treatment plots than on corresponding reference plots, whereas the number of SA P. cinereus decreased significantly more on treatment plots than on reference plots. The removal of every one P. cinereus from the treatment plots led to an increase of 0.69 P. hubrichti. These results emphasise the importance of conserving mature hardwood forests along the perimeter of the P. hubrichti distribution, where it is sympatric with P. cinereus, so as to prevent future range contraction of this vulnerable species
Coexistence in a One-Dimensional Cyclic Dominance Process
Cyclic (rock-paper-scissors-type) population models serve to mimic complex
species interactions. Focusing on a paradigmatic three-species model with
mutations in one dimension, we observe an interplay between equilibrium and
non-equilibrium processes in the stationary state. We exploit these insights to
obtain asymptotically exact descriptions of the emerging reactive steady state
in the regimes of high and low mutation rates. The results are compared to
stochastic lattice simulations. Our methods and findings are potentially
relevant for the spatio-temporal evolution of other non-equilibrium stochastic
processes.Comment: 4 pages, 4 figures and 2 pages of Supplementary Material. To appear
in Physical Review
Driven transport on parallel lanes with particle exclusion and obstruction
We investigate a driven two-channel system where particles on different lanes mutually obstruct each other's motion, extending an earlier model by Popkov and Peschel Phys. Rev. E 64, 026126 (2001)]. This obstruction may occur in biological contexts due to steric hinderance where motor proteins carry cargos by "walking" on microtubules. Similarly, the model serves as a description for classical spin transport where charged particles with internal states move unidirectionally on a lattice. Three regimes of qualitatively different behavior are identified, depending on the strength of coupling between the lanes. For small and large coupling strengths the model can be mapped to a one-channel problem, whereas a rich phase behavior emerges for intermediate ones. We derive an approximate but quantitatively accurate theoretical description in terms of a one-site cluster approximation, and obtain insight into the phase behavior through the current-density relations combined with an extremal-current principle. Our results are confirmed by stochastic simulations
Adsorption und phase equilibria: completely without diffusion?
In this work, we will present experimental and theoretical results concerning adsorption und phase
equilibria being influenced by kinetic effects
Phonon-like hydrogen-bond modes in protic ionic liquids
Gigahertz- to terahertz-frequency infrared and Raman spectra contain a wealth of information concerning the structure, intermolecular forces, and dynamics of ionic liquids. However, these spectra generally have a large number of contributions ranging from slow diffusional modes to underdamped librations and intramolecular vibrational modes. This makes it difficult to isolate effects such as the role of Coulombic and hydrogen-bonding interactions. We have applied far-infrared and ultrafast optical Kerr effect spectroscopies on carefully selected ions with a greater or lesser degree of symmetry in order to isolate spectral signals of interest. This has allowed us to demonstrate the presence of longitudinal and transverse optical phonon modes and a great similarity of alkylammonium-based protic ionic liquids to liquid water. The data show that such phonon modes will be present in all ionic liquids, requiring a reinterpretation of their spectra
Recommended from our members
Mechanical spectroscopy of retina explants at the protein level employing nanostructured scaffolds
Development of neuronal tissue, such as folding of the brain, and formation of the fovea centralis in the human retina are intimately connected with the mechanical properties of the underlying cells and the extracellular matrix. In particular for neuronal tissue as complex as the vertebrate retina, mechanical properties are still a matter of debate due to their relation to numerous diseases as well as surgery, where the tension of the retina can result in tissue detachment during cutting. However, measuring the elasticity of adult retina wholemounts is difficult and until now only the mechanical properties at the surface have been characterized with micrometer resolution. Many processes, however, such as pathological changes prone to cause tissue rupture and detachment, respectively, are reflected in variations of retina elasticity at smaller length scales at the protein level. In the present work we demonstrate that freely oscillating cantilevers composed of nanostructured TiO2 scaffolds can be employed to study the frequency-dependent mechanical response of adult mammalian retina explants at the nanoscale. Constituting highly versatile scaffolds with strong tissue attachment for long-term organotypic culture atop, these scaffolds perform damped vibrations as fingerprints of the mechanical tissue properties that are derived using finite element calculations. Since the tissue adheres to the nanostructures via constitutive proteins on the photoreceptor side of the retina, the latter are stretched and compressed during vibration of the underlying scaffold. Probing mechanical response of individual proteins within the tissue, the proposed mechanical spectroscopy approach opens the way for studying tissue mechanics, diseases and the effect of drugs at the protein level
Co-existence in the two-dimensional May-Leonard model with random rates
We employ Monte Carlo simulations to numerically study the temporal evolution
and transient oscillations of the population densities, the associated
frequency power spectra, and the spatial correlation functions in the
(quasi-)steady state in two-dimensional stochastic May--Leonard models of
mobile individuals, allowing for particle exchanges with nearest-neighbors and
hopping onto empty sites. We therefore consider a class of four-state
three-species cyclic predator-prey models whose total particle number is not
conserved. We demonstrate that quenched disorder in either the reaction or in
the mobility rates hardly impacts the dynamical evolution, the emergence and
structure of spiral patterns, or the mean extinction time in this system. We
also show that direct particle pair exchange processes promote the formation of
regular spiral structures. Moreover, upon increasing the rates of mobility, we
observe a remarkable change in the extinction properties in the May--Leonard
system (for small system sizes): (1) As the mobility rate exceeds a threshold
that separates a species coexistence (quasi-)steady state from an absorbing
state, the mean extinction time as function of system size N crosses over from
a functional form ~ e^{cN} / N (where c is a constant) to a linear dependence;
(2) the measured histogram of extinction times displays a corresponding
crossover from an (approximately) exponential to a Gaussian distribution. The
latter results are found to hold true also when the mobility rates are randomly
distributed.Comment: 9 pages, 4 figures; to appear in Eur. Phys. J. B (2011
Müller cell activation, proliferation and migration following laser injury.
PurposeMüller cells are well known for their critical role in normal retinal structure and function, but their reaction to retinal injury and subsequent role in retinal remodeling is less well characterized. In this study we used a mouse model of retinal laser photocoagulation to examine injury-induced Müller glial reaction, and determine how this reaction was related to injury-induced retinal regeneration and cellular repopulation.MethodsExperiments were performed on 3-4-week-old C57BL/6 mice. Retinal laser photocoagulation was used to induce small, circumscribed injuries; these were principally confined to the outer nuclear layer, and surrounded by apparently healthy retinal tissue. Western blotting and immunohistochemical analyses were used to determine the level and location of protein expression. Live cell imaging of green fluorescent protein (GFP)-infected Müller cells (AAV-GFAP-GFP) were used to identify the rate and location of retinal Müller cell nuclear migration.ResultsUpon injury, Müller cells directly at the burn site become reactive, as evidenced by increased expression of the intermediate filament proteins glial fibrillary acidic protein (GFAP) and nestin. These reactive cells re-enter the cell cycle as shown by expression of the markers Cyclin D1 and D3, and their nuclei begin to migrate toward the injury site at a rate of approximately 12 microm/hr. However, unlike other reports, evidence for Müller cell transdifferentiation was not identified in this model.ConclusionsRetinal laser photocoagulation is capable of stimulating a significant glial reaction, marked by activation of cell cycle progression and retinal reorganization, but is not capable of stimulating cellular transdifferentiation or neurogenesis
Design of Al-free and Al-based InGaAs/GaAs strained quantum well 980-nm pump lasers including thermal behavior effects on E/O characteristics
A 2D thermal simulator and a model to evaluate high power lasers characteristics have been developed. With these models it was possible to optimize cavity length of InGaAs/GaAs (Multiple) Quantum Well 980 nm lasers realized both with Al-based and Al-free confining layers. A comprehensive experimental investigation of the influence of cavity length and temperature on the laser emission wavelength has been performed. This allows a fine trimming of the devices to match the Erbium doped fiber absorption bandwidth
- …