59 research outputs found

    Quantitative comparison of chiral catalysts selectivity and performance: A generic concept illustrated with cyclododecanone monooxygenase as baeyer-villiger biocatalyst

    Get PDF
    Contribución equivalente como primer autor: Fink, Michael J. y Rial, Daniela V. Within this work a generic tool for chiral catalyst evaluation is established based on the application-oriented properties activity and selectivity; the concept aims at quantitatively comparing catalyst performance in general on a multitude of substrates. It is designed and intended to serve as decision guidance for challenges in catalysis and comprehensible information extraction from already recorded but unrefined data sets. The underlying algorithm assigns function points to catalytic entities via a statistically solid model possessing high flexibility and generates a relative ranking. This is coupled to an automated iterative refinement process towards maximum information content of results employing Shannon entropy optimization. Consequently, the developed workflow facilitates high distinguishability between catalysts even in low-scattering data sets. The numerical ranking is complemented by a clearly arranged graphic representation permitting facile and reliable visual interpretation of generality or niche capabilities of catalysts. Usefulness of the title concept is demonstrated by the performance evaluation of cyclododecanone monooxygenase, a highly versatile Baeyer-Villiger enzyme. To retain broad applicability, an open-source MATLAB® script is provided in electronic form.Fil: Fink, Michael J.. Vienna University of Technology; AustriaFil: Rial, Daniela Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas Centro Científico Tecnológico - CONICET -Rosario. Instituto de Biologia Molecular y Celular de Rosario; ArgentinaFil: Kapitanova, Petra. Vienna University of Technology; AustriaFil: Lengar, Alenka. Institute Of Applied Synthetic Chemistry; AustriaFil: Rehdorf, Jessica. ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD (UG);Fil: Cheng, Qiong. No especifíca;Fil: Rudroff, Florian. Vienna University of Technology; AustriaFil: Mihovilovic, Marko D.. Vienna University of Technology; Austri

    Recent Developments in the Application of Baeyer-Villiger Monooxygenases as Biocatalysts

    Full text link

    Discovery of novel Baeyer-Villiger monooxygenases and their application in organic synthesis.

    No full text
    Innerhalb dieser Arbeit ist es gelungen mittels verschiedener PCR-Methoden eine Baeyer-Villiger Monooxygenase (BVMO) aus genomischer DNA von P. putida JD1 zu amplifiezieren. Das Gen wurde anschließend kloniert und in E. coli überexprimiert. Nach Expressionsoptimierung erfolgte die Aufreinigung (Anionenaustauscher und Affinitätschromatographie) und die Charakterisierung der neuen BVMO. Dabei zeigte sich, das besonders Acetophenon-Derivate, die den Substituenten in para-Position haben bevorzugt umgesetzt werden. Daneben wurden aber auch Aldehyde und Sulfide oxidiert. Das Temperaturmaximum lag bei 30°C, das pH-Maximum bei 8,5 (in TrisHCl-Puffer). Neben den molekularbiologischen Methoden wurde eine neue Substratklasse für BVMOs etabliert. Dafür wurden verschiedene beta-substituierte lineare, aliphatische Ketone chemisch synthetisiert und anschließend in Biotransformationen mit verschiedenen BVMOs in einer kinetischen Racematspaltung untersucht. Dabei zeigte sich, dass N-geschützte beta-Aminoketone, arylaliphatische Ketone und beta-Hydroxyketone sehr gute Substrate für BVMOs sind (E > 100, bei c = 50%). Außerdem konnte ein neuer enzymatischer Syntheseweg zur Darstellung von enantiomerenreinen 1,2-Diolen und optische aktiver Vorstufen von beta-Aminosäuren mit BVMOs aufgezeigt werden.The application of BVMOs in kinetic resolution is a versatile alternative for the synthesis of optically pure esters. Within this thesis BVMOs proved to be highly active against a broad range of linear and aryl aliphatic ketones yielding a variety of enantiopure products. Among the beta-hydroxy ketones several CHMOs and BVMOPsfl showed the best results (E > 100), whereas the application of the latter enzyme also allowed access to the abnormal esters (regioisomeric excess > 40%). Interestingly, some enzymes showed a reduced activity and selectivity with a growing chain length of the ketone, suggesting that middle-chain ketones (C8-C10) might be preferred. Moreover, the production of optically pure 1,2-diols was observed (yields 8-50%), resulting from an in vivo hydrolysis of the 2-hydroxy alkyl acetates. Regarding the N-protected beta-amino ketones, results were different. While the majority of CHMOs catalyzed linear substrates showing high enantioselectivities (for CHMOBrevi1 and CHMOBrachy E > 100, c = 40-50%), BVMOPsfl did not convert nitrogen bearing linear ketones, although this might also be justified with the methylcarbamate protecting group. Interestingly, the number of BVMOs catalyzing oxidation of spatially more demanding linear branched beta-amino ketones was greatly reduced, indicating steric hindrance that was also combined with a decrease in selectivity. Similar to the observation for beta-hydroxy ketones, also the 2 amino alkyl acetates hydrolyzed furnishing 2-amino alcohols (yields 9-52%). Moreover, hydrolysis of the “abnormal“ esters allowed an alternative access to valuable native and non-native β-amino acids. In a two step process, using CDMO from R. ruber and CAL-B, it was possible to generate N-protected (+)-beta-leucine. During kinetic resolutions of aryl aliphatic ketones it was observed that the highest enantio¬selectivities could be achieved utilizing HAPMOJD1, HAPMOACB and PAMO, enzymes typically preferring aromatic substrates. Biotransformation with 3-phenyl-2-butanone revealed an E-value > 100 for HAPMOJD1 (S-selective). Nevertheless, also BVMOPsfl converted this sub¬strate (E = 43), and also CHMOAcineto and CPMO oxidized it, although selectivity was rather low (E < 5). Interestingly, BVMOKT2440 was the only examined enzyme showing R selectivity (E = 13). Additionally, increasing the scale and performing biotransformation in a baffled flask could increase enantioselectivity of BVMOPsfl from E = 43 to 82. The discovery of novel enzymes with diverse properties is still a main goal of the biotechnological industry. Within these studies, two BVMOs (BVMOKT2440 and HAPMOJD1) could be successfully amplified from genomic DNA using different PCR-methods. Then, expression in E. coli was optimized, revealing that the reduction of expression temperature, implementation of E. coli JM109 or RosettaTM (DE3), possessing the pRARE plasmid to facilitate translation of rare codons in the latter case, and/or co-expression of chaperones (pGro7: GroEL/ES-familiy) could increase the amount of soluble and active protein. Both enzymes were subjected to biocatalysis and it was found that BVMOKT2440 preferentially oxidized linear ketones, while HAPMOJD1 dominantly converted aryl aliphatic ketones. The latter enzyme could be purified by anion exchange and affinity chromatography allowing examination of kinetic parameters. Thereby, HAPMOJD1 displayed lowest KM-values for acetophenone derivatives bearing their substituent in para-position (KM < 320 µM). Moreover, also aldehydes and heteroaromatic compounds were oxidized and also sulfoxidation was observed. Interestingly it was found, that both BVMO genes are located in the direct neighborhood of a dehydrogenase and a hydrolase. This led to the suggestion that these enzymes may be metabolically connected in the degradation of their natural substrate
    • …
    corecore