48 research outputs found

    Four Years of Realtime GRB Followup by BOOTES-1B (2005-2008)

    Get PDF
    Four years of BOOTES-1B GRB follow-up history are summarised for the first time in the form of a table. The successfully followed events are described case by case. Further, the data are used to show the GRB trigger rate in Spain on a per-year basis, resulting in an estimate of 18 triggers and about 51 h of telescope time per year for real time triggers. These numbers grow to about 22 triggers and 77 h per year if we include also the GRBs observable within 2 hours after the trigger.Comment: 16 pages, Accepted into Proceedings of AstroRob Malaga 200

    Analysis of Blue Corona Discharges at the Top of Tropical Thunderstorm Clouds in Different Phases of Convection

    Get PDF
    We report on observations of corona discharges at the uppermost region of clouds characterized by emissions in a blue band of nitrogen molecules at 337 nm, with little activity in the red band of lightning leaders at 777.4 nm. Past work suggests that they are generated in cloud tops reaching the tropopause and above. Here we explore their occurrence in two convective environments of the same storm: one is developing with clouds reaching above the tropopause, and one is collapsing with lower cloud tops. We focus on those discharges that form a distinct category with rise times below 20 μs, implying that they are at the very top of the clouds. The discharges are observed in both environments. The observations suggest that a range of storm environments may generate corona discharges and that they may be common in convective surges.publishedVersio

    Global Frequency and Geographical Distribution of Nighttime Streamer Corona Discharges (BLUEs) in Thunderclouds

    Get PDF
    Blue LUminous Events (BLUEs) are transient corona discharges occurring in thunderclouds and characterized by strong 337.0 nm light flashes with absent (or weak) 777.4 nm component. We present the first nighttime climatology of BLUEs as detected by the Modular Multispectral Imaging Array of the Atmosphere-Space Interaction Monitor showing their worldwide geographical and seasonal distribution. A total (land and ocean) of E~11 BLUEs occur around the globe every second at local midnight and the average BLUE land/sea ratio is E~7:4. The northwest region of Colombia shows an annual nighttime peak. Globally, BLUEs are maximized during the boreal summer-autumn, contrary to lightning which is maximed in the boreal summer. The geographical distribution of nighttime BLUEs shows three main regions in, by order of importance, the Americas, Europe/Africa and Asia/AustraliapublishedVersio

    Optical emissions associated with narrow bipolar events from thunderstorm clouds penetrating into the stratosphere

    Get PDF
    Narrow bipolar events (NBEs) are signatures in radio signals from thunderstorms observed by ground-based receivers. NBEs may occur at the onset of lightning, but the discharge process is not well understood. Here, we present spectral measurements by the Atmosphere‐Space Interactions Monitor (ASIM) on the International Space Station that are associated with nine negative and three positive NBEs observed by a ground‐based array of receivers. We found that both polarities NBEs are associated with emissions at 337 nm with weak or no detectable emissions at 777.4 nm, suggesting that NBEs are associated with streamer breakdown. The rise times of the emissions for negative NBEs are about 10 μs, consistent with source locations at cloud tops where photons undergo little scattering by cloud particles, and for positive NBEs are ~1 ms, consistent with locations deeper in the clouds. For negative NBEs, the emission strength is almost linearly correlated with the peak current of the associated NBEs. Our findings suggest that ground-based observations of radio signals provide a new means to measure the occurrences and strength of cloud-top discharges near the tropopause.publishedVersio

    Observation of Terrestrial Gamma-Ray Flashes at Mid Latitude

    Get PDF
    We present a sample of Terrestrial Gamma-ray Flashes (TGFs) observed at mid latitudes by the Atmosphere Space Interaction Monitor (ASIM). The events were detected between June 2018 and August 2020 in the latitude bands between 35° and 51° in both hemispheres, which we hereafter refer to as “mid latitudes.” The sample includes the first observations above urn:x-wiley:2169897X:media:jgrd57293:jgrd57293-math-0001 and consists of 14 events clustered in four geographical regions: north-west Atlantic and eastern USA; Mediterranean Sea; the ocean around South Africa; and north-eastern China and Siberia. We examine the characteristics of each event, both standalone and in the context of the global ASIM TGF data set, and we find that our sample is consistent with the global population concerning the number of counts, but shows significantly shorter durations. We analyze the meteorological context and the general evolution of the parent storms and we show that the storms are not extreme in terms of total duration and extension. Whenever possible, we also include the radio sferics and the peak current of the parent stroke. Finally, we present an estimation of the TGF occurrence rate at mid latitudes, based on ASIM's exposure, the local flash rate and tropopause altitude, and we show that it is outside but very close to two standard deviation from the rate of production at tropical latitudes, corrected by the higher atmospheric absorption of higher latitudes. This means that atmospheric absorption plays a major role in the detection of TGFs at mid latitudes, but we cannot rule out other factors.publishedVersio

    Production of Terrestrial Gamma-Ray Flashes During the Early Stages of Lightning Flashes

    Get PDF
    Terrestrial Gamma-ray Flashes (TGFs) are short emissions of high energy photons associated with thunderstorms. It has been known since the discovery of TGFs that they are associated with lightning, and several case studies have shown that the TGFs are produced at the initial phase of the lightning flash. However, it has not been tested whether this is true in general. By using the largest TGF sample up to date, combined with ground-based radio lightning detection data, we perform a statistical study to test this. One of the TGF missions is the Atmosphere-Space Interactions Monitor (ASIM) consisting of the innovative combination of X- and gamma-ray detectors, optical photometers and cameras. This allows us to investigate the temporal relation between gamma-rays produced by TGFs and the optical signal produced by lightning discharges. Based on stacking analysis of the TGF sample and ground-based measurements of associated lightning activity, together with the high temporal resolution of the optical signal from the ASIM photometers, it is shown that TGFs are produced in the beginning of the lightning flashes. In addition, for a significant fraction of the TGFs, the lightning activity detected in radio is enhanced in an interval between 150 and 750 ms following the TGFs, and is co-located with the lightning associated with the TGFs. The enhanced lightning activity is not evident in a randomly selected sample of flashes. This indicates that the activity between 150 and 750 ms is a characteristic property of a significant fraction of flashes that start with a TGF.publishedVersio

    Spectral Observations of Optical Emissions Associated With Terrestrial Gamma-Ray Flashes

    Get PDF
    The Atmosphere-Space Interactions Monitor measures Terrestrial Gamma-Ray Flashes (TGFs) simultaneously with optical emissions from associated lightning activity. We analyzed optical measurements at 180–230, 337, and 777.4 nm related to 69 TGFs observed between June 2018 and October 2019. All TGFs are associated with optical emissions and 90% of them are at the onset of a large optical pulse, suggesting that they are connected with the initiation of current surges. A model of photon delay induced by cloud scattering suggests that the sources of the optical pulses are from 0.7 ms before to 4.4 ms after the TGFs, with a median of −10 ± 80 µs, and 1–5 km below the cloud top. The pulses have rise times comparable to lightning but longer durations. Pulse amplitudes at 337 nm are ∼3 times larger than at 777.4 nm. The results support the leader-streamer mechanism for TGF generation.publishedVersio

    Terrestrial Gamma-Ray Flashes With Accompanying Elves Detected by ASIM

    Get PDF
    The Atmosphere-Space Interactions Monitor was designed to monitor Terrestrial Gamma-ray Flashes (TGFs) and Transient Luminous Events (TLEs) from space, enabling the study of how these phenomena are related. In this paper, we present observations of 17 TGFs with accompanying Elves. TGFs are short and highly energetic bursts of gamma photons associated with lightning discharges, whereas Elves are TLEs that are observed as concentric rings of ultraviolet (UV) and visible light at ionospheric altitudes, produced by the excitation of N2 molecules when an electromagnetic pulse hits the base of the ionosphere. Elves were identified when optical detections in the UV band could be clearly distinguished from other optical signals from lightning strokes. The TGFs they accompanied had short durations and were associated with particularly high peak current lightning. Lightning sferics associated with these events were detected by the global lightning network GLD360 and the World Wide Lightning Location Network, and they were, with the exception of one event, observed over ocean or coastal regions. It is likely that these events were associated with Energetic In-cloud Pulses. We show that short duration TGFs tend to be associated with higher peak currents than long duration TGFs.publishedVersio

    IBIS: The Imager on-board INTEGRAL

    Get PDF
    The IBIS telescope is the high angular resolution gamma-ray imager on-board the INTEGRAL Observatory, successfully launched from Baikonur (Kazakhstan) the 17th of October 2002. This medium size ESA project, planned for a 2 year mission with possible extension to 5, is devoted to the observation of the gamma-ray sky in the energy range from 3 keV to 10 MeV (Winkler 2001). The IBIS imaging system is based on two independent solid state detector arrays optimised for low ( 15-1000 keV) and high ( 0.175-10.0 MeV) energies surrounded by an active VETO System. This high efficiency shield is essential to minimise the background induced by high energy particles in the highly excentric out of van Allen belt orbit. A Tungsten Coded Aperture Mask, 16 mm thick and ~1 squared meter in dimension is the imaging device. The IBIS telescope will serve the scientific community at large providing a unique combination of unprecedented high energy wide field imaging capability coupled with broad band spectroscopy and high resolution timing over the energy range from X to gamma rays. To date the IBIS telescope is working nominally in orbit since more than 9 month.Reglero Velasco, Victor, [email protected]

    Spectral Analysis of Individual Terrestrial Gamma-ray Flashes Detected by ASIM

    Get PDF
    The Atmosphere-Space Interactions Monitor (ASIM) is the first instrument in space specifically designed to observe terrestrial gamma-ray flashes (TGFs). TGFs are high energy photons associated with lightning flashes and we perform the spectral analysis of 17 TGFs detected by ASIM. The TGF sample is carefully selected by rigorous selection criteria to keep a clean sample suitable for spectral analysis, that is, suitable count statistics, low instrumental effects, and reliable source location. Monte Carlo modeling of individual TGFs has been compared to the observed energy spectra to study the possible source altitudes and beaming geometries. A careful model of the instrumental effects has been developed and validated. Several combinations of source altitudes and beaming geometries are accepted by the statistical tests for all the TGFs in the sample resulting in a large uncertainty in the estimate of the intrinsic source luminosity. The analyzed TGFs show significant variations in observed fluence independent of the distance between source and ASIM. A lower limit on the maximum photon energy produced by TGFs is estimated to be 24 MeV for the analyzed TGFs. The intrinsic limitations of TGF spectral analysis from space are also investigated and it is found that the ability to constrain the source altitude and beaming geometries of TGFs strongly depends on the distance between source and satellite. With the current generation of instruments with effective areas in the range of few hundreds cm2, it is very difficult to constrain reliably the source properties without the help of simultaneous measurements in the radio band.publishedVersio
    corecore