124 research outputs found

    Identification of the sex pheromone of Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae) from Asunción, Paraguay

    Get PDF
    The sand fly Lutzomyia longipalpis is the main vector of Leishmania (L.) infantum (Nicolle), the causative agent of American visceral leishmaniasis (AVL) in the New World. Male Lu. longipalpis have secretory glands which produce sex pheromones in either abdominal tergites 4 or 3 and 4. These glands are sites of sex pheromone production and each pheromone type may represent true sibling species. In Latin America, apart from Lu. pseudolongipalpis Arrivillaga and Feliciangeli from Venezuela, populations of Lu. longipalpis s.l. can be identified by their male-produced sex pheromones: (S)-9-methylgermacrene-B, 3-methyl-α-himachalene and the two cembrenes, 1 and 2

    Synthetic sex pheromone attracts the leishmaniasis vector Lutzomyia longipalpis to experimental chicken sheds treated with insecticide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current strategies for controlling American visceral leishmaniasis (AVL) have been unable to prevent the spread of the disease across Brazil. With no effective vaccine and culling of infected dogs an unpopular and unsuccessful alternative, new tools are urgently needed to manage populations of the sand fly vector, <it>Lutzomyia longipalpis </it>Lutz and Neiva (Diptera: Psychodidae). Here, we test two potential strategies for improving <it>L. longipalpis </it>control using the synthetic sand fly pheromone (±)-9-methylgermacrene-B: the first in conjunction with spraying of animal houses with insecticide, the second using coloured sticky traps.</p> <p>Results</p> <p>Addition of synthetic pheromone resulted in greater numbers of male and female sand flies being caught and killed at experimental chicken sheds sprayed with insecticide, compared to pheromone-less controls. Furthermore, a ten-fold increase in the amount of sex pheromone released from test sheds increased the number of females attracted and subsequently killed. Treating sheds with insecticide alone resulted in a significant decrease in numbers of males attracted to sheds (compared to pre-spraying levels), and a near significant decrease in numbers of females. However, this effect was reversed through addition of synthetic pheromone at the time of insecticide spraying, leading to an increase in number of flies attracted post-treatment.</p> <p>In field trials of commercially available different coloured sticky traps, yellow traps caught more males than blue traps when placed in chicken sheds. In addition, yellow traps fitted with 10 pheromone lures caught significantly more males than pheromone-less controls. However, while female sand flies showed a preference for both blue and yellow pheromone traps sticky traps over white traps in the laboratory, neither colour caught significant numbers of females in chicken sheds, either with or without pheromone.</p> <p>Conclusions</p> <p>We conclude that synthetic pheromone could currently be most effectively deployed for sand fly control through combination with existing insecticide spraying regimes. Development of a standalone pheromone trap remains a possibility, but such devices may require an additional attractive host odour component to be fully effective.</p

    Primeiro encontro de Lutzomyia longipalpis (Lutz & Neiva, 1912) na área urbana de Campo Grande, MS, Brasil

    Get PDF
    This is a report of the first finding of visceral leishmaniasis' vector Lutzomyia longipalpis in the urban area of Campo Grande, State of Mato Grosso do Sul. The importance of this finding regarding the transmission of the disease in this area is discussed.Relata-se a ocorrência, pela primeira vez, do vetor da leishmaniose visceral, Lutzomyia longipalpis, na área urbana de Campo Grande, Mato Grosso do Sul. Discute-se a importância deste encontro na transmissão da doença nessa área

    Dinner and a show : the role of male copulatory courtship song and female blood-feeding in the reproductive success of Lutzomyia longipalpis from Lapinha, Brazil

    Get PDF
    The work was supported by CNPq (Science without Borders program) and CAPES.Lutzomyia longipalpis is the main vector of visceral Leishmaniasis in the Americas and is composed of a species complex. Males of this sand-fly produce acoustic signals during copulation and different patterns are observed among Brazilian populations. Such acoustic signals are commonly involved in species recognition. However, since the song is only produced during copulation it is not clear how it affects mating success or contributes to sexual isolation. Another aspect that may affect reproductive success is the presence of food. Since hematophagy is such an important aspect of L. longipalpis biology, we wanted to test if blood-feeding can influence the reproductive behaviour of this insect. We performed crossing experiments removing males' wings (silencing them) and playing back either the homo-specific or the hetero-specific song to either unfed or blood-fed females. Our results showed that both songs and blood-feeding affect insemination success, but not the frequency of copulation. In trials where females were not blood-fed song clearly affected insemination; males with wings, and males with homo-specific song playback had a higher insemination success than wingless males (no song) and trials with hetero-specific song. Blood-feeding females prior to the trials increased insemination in all groups including the control group which suggests that mating happens simultaneously with, or immediately after, the blood meal. Blood-fed females also seemed to discriminate less against the wrong song or the lack of song (wingless) one day after feeding, however trials with the correct song still had higher insemination rates. Altogether, our results show that both the male copulatory courtship songs and female blood-feeding are important for reproductive success and as such are important components of the sexual behaviour of L. longipalpis.PostprintPeer reviewe

    Distribution of lutzomyia longipalpis chemotype populations in Sao Paulo state, Brazil

    Get PDF
    American visceral leishmaniasis (AVL) is an emerging disease in the state of Sao Paulo, Brazil. Its geographical expansion and the increase in the number of human cases has been linked to dispersion of Lutzomyia longipalpis into urban areas. To produce more accurate risk maps we investigated the geographic distribution and routes of expansion of the disease as well as chemotype populations of the vector. A database, containing the annual records of municipalities which had notified human and canine AVL cases as well as the presence of the vector, was compiled. The chemotypes of L. longipalpis populations from municipalities in different regions of Sao Paulo State were determined by Coupled Gas Chromatography - Mass Spectrometry. From 1997 to June 2014, L. longipalpis has been reported in 166 municipalities, 148 of them in the Western region. A total of 106 municipalities were identified with transmission and 99 were located in the Western region, where all 2,204 autochthonous human cases occurred. Both the vector and the occurrence of human cases have expanded in a South-easterly direction, from the Western to central region, and from there, a further expansion to the North and the South. The (S)-9-methylgermacrene-B population of L. longipalpis is widely distributed in the Western region and the cembrene-1 population is restricted to the Eastern region. The maps in the present study show that there are two distinct epidemiological patterns of AVL in Sao Paulo State and that the expansion of human and canine AVL cases through the Western region has followed the same dispersion route of only one of the two species of the L. longipalpis complex, (S)-9-methylgermacrene-B. Entomological vigilance based on the routes of dispersion and identification of the chemotype population could be used to identify at-risk areas and consequently define the priorities for control measures93COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESSuperintendencia de Controle de Endemias (SUCEN); Wellcome Trus

    Susceptibility of Wild-Caught Lutzomyia longipalpis (Diptera: Psychodidae) Sand Flies to Insecticide After an Extended Period of Exposure in Western São Paulo, Brazil

    Get PDF
    Background In Brazil, members of the sand fly species complex Lutzomyia longipalpis transmit Leishmania infantum, a protist parasite that causes visceral leishmaniasis. Male Lu. longipalpis produce a sex pheromone that is attractive to both females and males. During a cluster randomised trial, to determine the combined effect of synthetic sex-aggregation pheromone and insecticide on Le. infantum transmission Lu. longipalpis had been continuously exposed to insecticide for 30 months. The objective of this study was to determine the effect of continuous exposure to the insecticides used in the trial on the susceptibility of Lu. longipalpis population. Methods During the trial the sand flies had been exposed to either lambda-cyhalothrin [pheromone + residual insecticide spray (PI)], deltamethrin [dog collars (DC)] or no insecticide [control (C)], for 30 months (November 2012 to April 2015). The insecticide treatment regime was kept in place for an additional 12 months (May 2015-April 2016) during this susceptibility study. Sand flies collected from the field were exposed to WHO insecticide-impregnated papers cyhalothrin (0.05%), deltamethrin (0.5%) and control (silicone oil) in a modified WHO insecticide exposure trial to determine their susceptibility. Results We collected 788 Lu. longipalpis using CDC-light traps in 31 municipalities across the three trial arms. Probit analysis showed that the knockdown times (KDTs) of Lu. longipalpis collected from the lambda-cyhalothrin exposed PI-arm [KDT50: 31.1 min, confidence interval (CI): 29.6–32.6 and KDT90: 44.2 min, CI: 42.1–46.7] were longer than the KDTs from the non-insecticide-treated C-arm (KDT50: 26.3 min, CI: 25.1–27.6 and KDT90: 38.2, CI: 36.5–40.2) (no-overlapping 95% CIs). KDTs of Lu. longipalpis collected from the deltamethrin exposed DC-arm had similar values (KDT50: 13.7 min, CI: 10.1–16.2 and KDT90: 26.7 min, CI: 21.8–30.6) to those for the C-arm (KDT50: 13.5 min; CI: 12.2–14.8 and KDT90: 23.2 min, CI: 21.4–25.4) (overlapping CIs). The wild-caught unexposed Lu. longipalpis (C-arm), took approximately twice as long to knock down as laboratory-colonised specimens for both insecticides. Conclusions Our study reveals slight changes in KDT, in sand flies after prolonged exposure to lambda-cyhalothrin in the presence of pheromone. These changes are not considered to have reached the reference levels indicative of resistance in sand flies suggesting that pheromone and insecticide treatment at the level indicated in this study do not constitute a significant risk of increased insecticide resistance. Prolonged exposure to deltamethrin in dog collars did not result in changes to KDT
    corecore