173 research outputs found

    Observation of CP violation in B ->eta/K-0 decays

    Get PDF
    We present measurements of the time-dependent CP-violation parameters S and C in B-0 -> eta K-'(0) decays. The data sample corresponds to 384 x 10(6) B (B) over bar pairs produced by e(+)e(-) annihilation at the Upsilon(4S). The results are S = 0.58 +/- 0.10 +/- 0.03 and C = -0.16 +/- 0.07 +/- 0.03. We observe mixing-induced CP violation with a significance of 5.5 standard deviations in this b -> s penguin dominated mode

    Measurements of CP-violating asymmetries in B-0 -> a(1)(+/-)(1260)pi(-/+) decays

    Get PDF
    We present measurements of CP-violating asymmetries in the decay B-0 -> a(1)(+/-)(1260)pi(-/+) with a(1)(+/-)(1260)->pi(-/+)pi(+/-)pi(+/-). The data sample corresponds to 384x10(6) B(b) over bar pairs collected with the BABAR detector at the PEP-II asymmetric B factory at SLAC. We measure the CP-violating asymmetry A(CP)(a1 pi)=-0.07 +/- 0.07 +/- 0.02, the mixing-induced CP violation parameter S-a1 pi=0.37 +/- 0.21 +/- 0.07, the direct CP violation parameter C-a1 pi=-0.10 +/- 0.15 +/- 0.09, and the parameters Delta C-a1 pi=0.26 +/- 0.15 +/- 0.07 and Delta S-a1 pi=-0.14 +/- 0.21 +/- 0.06. From these measured quantities we determine the angle alpha(eff)=78.6 degrees +/- 7.3 degrees

    Measurement of branching fractions and charge asymmetries in B decays to an eta meson and a K-* meson

    Get PDF
    We present measurements of branching fractions and charge asymmetries for the decays B ->eta K-*, where K-* indicates a spin 0, 1, or 2 K pi system. The data sample corresponds to 344x10(6) B (B) over bar pairs collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at SLAC. We measure the branching fractions (in units of 10(-6)): B(B-0 ->eta K-*0(892))=16.5 +/- 1.1 +/- 0.8, B(B+->eta K*+(892))=18.9 +/- 1.8 +/- 1.3, B(B-0 ->eta(K pi)(0)(*0))=11.0 +/- 1.6 +/- 1.5, B(B+->eta(K pi)(0)(*+))=18.2 +/- 2.6 +/- 2.6, B(B-0 ->eta K-2(*0)(1430))=9.6 +/- 1.8 +/- 1.1, and B(B+->eta K-2(*+)(1430))=9.1 +/- 2.7 +/- 1.4. We also determine the charge asymmetries for all decay modes

    Search for the highly suppressed decays B- -> K+π-π- and B- -> K-K-π+

    Get PDF
    We report a search for the decays B- -> K+pi(-)pi(-) and B- -> K-K-pi(+), which are highly suppressed in the standard model. Using a sample of (467 +/- 5) x 10(6) B (B) over bar pairs collected with the BABAR detector, we do not see any evidence of these decays and determine 90% confidence level upper limits of B(B- -> K+pi(-)pi(-)) and K-K-pi(+)) and < 1.6 x 10(-7) on the corresponding branching fractions, including systematic uncertainties

    Black Tattoos Entail Substantial Uptake of Genotoxicpolycyclic Aromatic Hydrocarbons (PAH) in Human Skin and Regional Lymph Nodes

    Get PDF
    Hundreds of millions of people worldwide have tattoos, which predominantly contain black inks consisting of soot products like Carbon Black or polycyclic aromatic hydrocarbons (PAH). We recently found up to 200 mg/g of PAH in commercial black inks. After skin tattooing, a substantial part of the ink and PAH should be transported to other anatomical sites like the regional lymph nodes. To allow a first estimation of health risk, we aimed to extract and quantify the amount of PAH in black tattooed skin and the regional lymph nodes of pre-existing tattoos. Firstly, we established an extraction method by using HPLC – DAD technology that enables the quantification of PAH concentrations in human tissue. After that, 16 specimens of human tattooed skin and corresponding regional lymph nodes were included in the study. All skin specimen and lymph nodes appeared deep black. The specimens were digested and tested for 20 different PAH at the same time.PAH were found in twelve of the 16 tattooed skin specimens and in eleven regional lymph nodes. The PAH concentration ranged from 0.1–0.6 mg/cm2 in the tattooed skin and 0.1–11.8 mg/g in the lymph nodes. Two major conclusions can be drawn from the present results. Firstly, PAH in black inks stay partially in skin or can be found in the regional lymph nodes. Secondly, the major part of tattooed PAH had disappeared from skin or might be found in other organs than skin and lymph nodes. Thus, beside inhalation and ingestion, tattooing has proven to be an additional, direct and effective route of PAH uptake into the human body
    corecore